タグ「正四面体」の検索結果

7ページ目:全120問中61問~70問を表示)
千葉大学 国立 千葉大学 2013年 第3問
$1$辺の長さが$3$の正四面体$\mathrm{OABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$とする.また,辺$\mathrm{OC}$上に点$\mathrm{E}$をとり,$\mathrm{CE}=t$とする.

(1)$\mathrm{AD}$の長さを求めよ.
(2)$\cos \angle \mathrm{DAE}$を$t$を用いて表せ.
(3)$\triangle \mathrm{ADE}$の面積が最小になるときの$t$の値とそのときの面積を求めよ.
三重大学 国立 三重大学 2013年 第3問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに,等しい確率で動くとする.$n$を$0$以上の整数とし,点$\mathrm{P}$が$n$秒後に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$にある確率を,それぞれ$p_n,\ q_n,\ r_n,\ s_n$とする.このとき以下の問いに答えよ.

(1)$n \geqq 1$に対し$q_n=r_n=s_n$となることを数学的帰納法で証明せよ.
(2)$n \geqq 1$に対し$p_n,\ q_n$を$p_{n-1},\ q_{n-1}$で表せ.ただし,$p_0=1,\ q_0=0$とする.
(3)$c_n=p_n-q_n$とおいて$c_n$の一般項を求めよ.
(4)$p_n$の一般項を求めよ.
三重大学 国立 三重大学 2013年 第3問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに,等しい確率で動くとする.$n$を$0$以上の整数とし,点$\mathrm{P}$が$n$秒後に$\mathrm{A}$にある確率を$p_n$,$\mathrm{B}$にある確率を$q_n$とする.このとき,$n$秒後に$\mathrm{C}$にある確率も,$\mathrm{D}$にある確率も$q_n$となる.このことに注意して,以下の問いに答えよ.ただし,$p_0=1,\ q_0=0$とする.

(1)$n \geqq 1$に対し$p_n,\ q_n$を$p_{n-1},\ q_{n-1}$で表せ.
(2)$c_n=p_n-q_n$とおいて$c_n$の一般項を求めよ.
(3)$p_n$の一般項を求めよ.
宮城教育大学 国立 宮城教育大学 2013年 第3問
空間内に$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$と点$\mathrm{O}$があり,
\[ |\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{CO}}|=|\overrightarrow{\mathrm{DO}}| \]
を満たしている.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,次の問いに答えよ.

(1)空間内の点$\mathrm{P}$について,$l,\ m,\ n$を実数とし,
\[ \overrightarrow{\mathrm{AP}}=l \overrightarrow{b}+m \overrightarrow{c}+n \overrightarrow{d} \]
とする.このとき,$|\overrightarrow{\mathrm{AP}}|^2$,$|\overrightarrow{\mathrm{BP}}|^2$をそれぞれ$l,\ m,\ n$を用いて表せ.また,$|\overrightarrow{\mathrm{AP}}|^2=|\overrightarrow{\mathrm{BP}}|^2$であるための必要十分条件を$l,\ m,\ n$を用いて表せ.
(2)$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{1}{4}(\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d})$であることを示せ.
(3)線分$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$とする.$3$点$\mathrm{A}$,$\mathrm{C}$,$\mathrm{D}$を通る平面と直線$\mathrm{EO}$との交点を$\mathrm{F}$とするとき,$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{c}$,$\overrightarrow{d}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2013年 第3問
空間内に$1$辺の長さが$1$の正四面体$\mathrm{ABCD}$と点$\mathrm{O}$があり,
\[ |\overrightarrow{\mathrm{AO}}|=|\overrightarrow{\mathrm{BO}}|=|\overrightarrow{\mathrm{CO}}|=|\overrightarrow{\mathrm{DO}}| \]
を満たしている.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,次の問いに答えよ.

(1)空間内の点$\mathrm{P}$について,$l,\ m,\ n$を実数とし,
\[ \overrightarrow{\mathrm{AP}}=l \overrightarrow{b}+m \overrightarrow{c}+n \overrightarrow{d} \]
とする.このとき,$|\overrightarrow{\mathrm{AP}}|^2$,$|\overrightarrow{\mathrm{BP}}|^2$をそれぞれ$l,\ m,\ n$を用いて表せ.また,$|\overrightarrow{\mathrm{AP}}|^2=|\overrightarrow{\mathrm{BP}}|^2$であるための必要十分条件を$l,\ m,\ n$を用いて表せ.
(2)$\displaystyle \overrightarrow{\mathrm{AO}}=\frac{1}{4}(\overrightarrow{b}+\overrightarrow{c}+\overrightarrow{d})$であることを示せ.
(3)線分$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$とする.$3$点$\mathrm{A}$,$\mathrm{C}$,$\mathrm{D}$を通る平面と直線$\mathrm{EO}$との交点を$\mathrm{F}$とするとき,$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{c}$,$\overrightarrow{d}$を用いて表せ.
三重大学 国立 三重大学 2013年 第5問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに動くとする.$n$を正の整数として,$\mathrm{A}$から出発して$n$秒後に$\mathrm{A}$に戻る経路の数を$\alpha_n$,$\mathrm{A}$から出発して$n$秒後に$\mathrm{B}$に到達する経路の数を$\beta_n$とする.このとき,$\mathrm{A}$から出発して$n$秒後に$\mathrm{C}$に到達する経路の数も,$\mathrm{D}$に到達する経路の数も$\beta_n$となる.このことに注意して,以下の問いに答えよ.ただし$\alpha_0=1$,$\beta_0=0$とする.

(1)$\alpha_2,\ \beta_2,\ \alpha_2+3 \beta_2,\ \alpha_3,\ \beta_3,\ \alpha_3+3 \beta_3$を求めよ.
(2)$n \geqq 1$に対し$\alpha_n,\ \beta_n$を$\alpha_{n-1},\ \beta_{n-1}$で表せ.
(3)$c_n=\alpha_n-\beta_n$とおいて$c_n$の一般項を求めよ.
(4)$\alpha_n$の一般項を求めよ.
琉球大学 国立 琉球大学 2013年 第1問
次の問いに答えよ.

(1)直径$1$の球を球の中心から距離$a$の平面で切って二つの部分に分け \\
たとき,中心を含まない部分の体積を求めよ.ただし,$\displaystyle 0<a<\frac{1}{2}$ \\
とする.
(2)$1$辺の長さが$1$である立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える.この立方体に \\
内接する球と正四面体$\mathrm{ACFH}$との共通部分の体積を求めよ.
\img{748_3103_2013_1}{40}
三重大学 国立 三重大学 2013年 第4問
正四面体$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,時刻$0$では頂点$\mathrm{A}$にあり,$1$秒ごとに,今いる頂点から他の$3$頂点のいずれかに動くとする.$n$を正の整数として,$\mathrm{A}$から出発して$n$秒後に$\mathrm{A}$に戻る経路の数を$\alpha_n$,$\mathrm{A}$から出発して$n$秒後に$\mathrm{B}$に到達する経路の数を$\beta_n$とする.このとき,$\mathrm{A}$から出発して$n$秒後に$\mathrm{C}$に到達する経路の数も,$\mathrm{D}$に到達する経路の数も$\beta_n$となる.このことに注意して,以下の問いに答えよ.ただし$\alpha_0=1$,$\beta_0=0$とする.

(1)$\alpha_2,\ \beta_2,\ \alpha_2+3 \beta_2,\ \alpha_3,\ \beta_3,\ \alpha_3+3 \beta_3$を求めよ.
(2)$n \geqq 1$に対し$\alpha_n,\ \beta_n$を$\alpha_{n-1},\ \beta_{n-1}$で表せ.
(3)$c_n=\alpha_n-\beta_n$とおいて$c_n$の一般項を求めよ.
(4)$\alpha_n$の一般項を求めよ.
名城大学 私立 名城大学 2013年 第3問
$1$辺の長さが$1$の正四面体$\mathrm{OABC}$があり,その辺$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$の中点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.

(1)$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$|\overrightarrow{\mathrm{PR}}|$を求めよ.
(3)$\triangle \mathrm{PQR}$の面積を求めよ.
日本女子大学 私立 日本女子大学 2013年 第1問
$1$辺の長さが$a$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OB}$の中点を$\mathrm{P}$とし,辺$\mathrm{OC}$を$2:1$に内分する点を$\mathrm{Q}$とする.

(1)線分$\mathrm{AP}$,線分$\mathrm{AQ}$,線分$\mathrm{PQ}$の長さを求めよ.
(2)$\cos \angle \mathrm{PAQ}$の値を求めよ.
(3)$\triangle \mathrm{PAQ}$の面積を求めよ.
スポンサーリンク

「正四面体」とは・・・

 まだこのタグの説明は執筆されていません。