タグ「正四面体」の検索結果

4ページ目:全120問中31問~40問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CD}=5$,$\mathrm{DA}=6$をみたす四角形$\mathrm{ABCD}$を考える.この四角形の面積を$F$とすると
\[ F=[$1$][$2$] \sin B+[$3$][$4$] \sin D \]
が成り立つ.余弦定理を用いれば
\[ F^2=[$5$][$6$][$7$]-[$8$][$9$][$10$] \cos (B+D) \]
を得る.$B+D=\pi$のとき,$F$は最大値
\[ 6 \sqrt{[$11$][$12$]} \]
をとる.
(2)辺の長さが$2 \sqrt{3}$の正四面体$F$がある.$F$の内部に中心をもち,$F$のどの辺とも高々$1$点を共有する球を考える.これらの球の中で最大のものを$B$とすれば,$B$の体積は$[$13$] \sqrt{[$14$]}\pi$である.
星薬科大学 私立 星薬科大学 2015年 第6問
$c_y \geqq 0$,$c_z \geqq 0$として,空間に点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 2 \sqrt{3})$,$\mathrm{C}(0,\ c_y,\ c_z)$,$\mathrm{D}(-2,\ d_y,\ d_z)$を頂点とする正四面体がある.次の問に答えよ.

(1)この正四面体$\mathrm{ABCD}$の一辺の長さは$[$51$]$であり,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[$52$]$である.
(2)点$\mathrm{C}$の座標において
\[ c_y=\frac{[$53$] \sqrt{[$54$]}}{[$55$]},\quad c_z=\frac{[$56$] \sqrt{[$57$]}}{[$58$]}, \]
点$\mathrm{D}$の座標において$d_y=[$59$]$,$d_z=[$60$]$である.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
津田塾大学 私立 津田塾大学 2015年 第1問
次の問いに答えよ.

(1)$n$を自然数とするとき,不等式$3^n>n^2$を示せ.
(2)正四面体$\mathrm{OABC}$において$\mathrm{OA}$の中点を$\mathrm{M}$,$\mathrm{BC}$の中点を$\mathrm{N}$とする.

(i) $\overrightarrow{\mathrm{MN}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表せ.
(ii) 直線$\mathrm{MN}$と直線$\mathrm{BC}$は直交することを示せ.
広島市立大学 公立 広島市立大学 2015年 第4問
$1$辺の長さが$1$である正四面体$\mathrm{OABC}$において,$\mathrm{OA}$を$3:1$に内分する点を$\mathrm{P}$,$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{Q}$,$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{R}$,$\mathrm{OC}$を$2:1$に内分する点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$をそれぞれ求めよ.
(2)$\overrightarrow{\mathrm{PR}}$および$\overrightarrow{\mathrm{QS}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{PR}}$と$\overrightarrow{\mathrm{QS}}$のなす角を$\theta$とするとき,$\theta$は鋭角,直角,鈍角のいずれであるかを調べよ.
(4)線分$\mathrm{PR}$と線分$\mathrm{QS}$は交点をもつかどうかを調べよ.
島根県立大学 公立 島根県立大学 2015年 第3問
$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$がある.面$\mathrm{ABC}$と面$\mathrm{DBC}$のなす角を$\theta$とするとき,次の問いに答えなさい.

(1)$\cos \theta$を求めなさい.
(2)正四面体$\mathrm{ABCD}$の体積$V$を求めなさい.
(3)正四面体$\mathrm{ABCD}$に内接する球の半径$r$を求めなさい.
新潟大学 国立 新潟大学 2014年 第2問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$とし,線分$\mathrm{CP}$を$3:1$に内分する点を$\mathrm{Q}$とする.また,直線$\mathrm{OC}$上の点$\mathrm{R}$を$\overrightarrow{\mathrm{QR}} \perp \overrightarrow{\mathrm{OC}}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.さらに,$\overrightarrow{\mathrm{OQ}}$の大きさ$|\overrightarrow{\mathrm{OQ}}|$を求めよ.
(2)$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{RC}}$の大きさの比$|\overrightarrow{\mathrm{OR}}|:|\overrightarrow{\mathrm{RC}}|$を求めよ.
(3)$\triangle \mathrm{OQR}$の面積を求めよ.
新潟大学 国立 新潟大学 2014年 第2問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$とし,線分$\mathrm{CP}$を$3:1$に内分する点を$\mathrm{Q}$とする.また,直線$\mathrm{OC}$上の点$\mathrm{R}$を$\overrightarrow{\mathrm{QR}} \perp \overrightarrow{\mathrm{OC}}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{QR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{QR}}$の大きさ$|\overrightarrow{\mathrm{QR}}|$を求めよ.
熊本大学 国立 熊本大学 2014年 第1問
空間内の$1$辺の長さ$1$の正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,$\mathrm{OA}$の中点を$\mathrm{P}$とする.以下の問いに答えよ.

(1)$0<t<1$に対し,$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.また,$\mathrm{PM}+\mathrm{MQ}$が最小となる$\mathrm{OB}$上の点を$\mathrm{M}$とし,$\mathrm{PN}+\mathrm{NQ}$が最小となる$\mathrm{OC}$上の点を$\mathrm{N}$とする.このとき,$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を,それぞれ$t$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\triangle \mathrm{QMN}$の面積を$t$を用いて表せ.
(3)$t$が$0<t<1$の範囲を動くとき,$\triangle \mathrm{QMN}$の面積の最大値を求めよ.
熊本大学 国立 熊本大学 2014年 第1問
空間内の$1$辺の長さ$1$の正四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.また,点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=\overrightarrow{b}-\overrightarrow{a}$を満たす点,点$\mathrm{E}$を$\overrightarrow{\mathrm{OE}}=\overrightarrow{c}-\overrightarrow{a}$を満たす点とし,点$\mathrm{P}$を$\mathrm{OA}$の中点とする.以下の問いに答えよ.

(1)$0<t<1$に対し,$\mathrm{BD}$を$t:(1-t)$に内分する点を$\mathrm{R}$とし,$\mathrm{CE}$を$(1-t):t$に内分する点を$\mathrm{S}$とする.また,$\mathrm{OB}$と$\mathrm{PR}$の交点を$\mathrm{M}$とし,$\mathrm{OC}$と$\mathrm{PS}$の交点を$\mathrm{N}$とする.このとき,$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を,それぞれ$t$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\triangle \mathrm{OMN}$の面積を$t$を用いて表せ.
(3)$t$が$0<t<1$の範囲を動くとき,$\triangle \mathrm{OMN}$の面積の最小値を求めよ.
スポンサーリンク

「正四面体」とは・・・

 まだこのタグの説明は執筆されていません。