タグ「正四面体」の検索結果

10ページ目:全120問中91問~100問を表示)
東京工業大学 国立 東京工業大学 2012年 第1問
次の問いに答えよ.

(1)辺の長さが$1$である正四面体$\mathrm{OABC}$において辺$\mathrm{AB}$の中点を$\mathrm{D}$,辺$\mathrm{OC}$の中点を$\mathrm{E}$とする.$2$つのベクトル$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{AC}}$との内積を求めよ.
(2)$1$から$6$までの目がそれぞれ$\displaystyle \frac{1}{6}$の確率で出るさいころを同時に$3$個投げるとき,目の積が$10$の倍数になる確率を求めよ.
熊本大学 国立 熊本大学 2012年 第4問
一辺の長さが$\sqrt{2}$の正四面体OABCにおいて,辺ABの中点をM,辺BCを$1:2$に内分する点をN,辺OCの中点をLとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおく.以下の問いに答えよ.

(1)3点L,M,Nを通る平面と直線OAの交点をDとする.$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)辺OBの中点Kから直線DN上の点Pへ垂線KPを引く.$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
佐賀大学 国立 佐賀大学 2012年 第1問
座標空間内で,原点$\mathrm{O}$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(b_1,\ b_2,\ 0)$,$\mathrm{C}(c_1,\ c_2,\ c_3)$を頂点とする正四面体を考える.ただし,$b_2$と$c_3$は正とする.次の問いに答えよ.

(1)$b_1,\ b_2$および$c_1,\ c_2,\ c_3$を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(3)$\mathrm{P}$は直線$\mathrm{BC}$上の点で,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとする.$\mathrm{P}$の座標を求めよ.また$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
佐賀大学 国立 佐賀大学 2012年 第1問
座標空間内で,原点$\mathrm{O}$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(b_1,\ b_2,\ 0)$,$\mathrm{C}(c_1,\ c_2,\ c_3)$を頂点とする正四面体を考える.ただし,$b_2$と$c_3$は正とする.次の問いに答えよ.

(1)$b_1,\ b_2$および$c_1,\ c_2,\ c_3$を求めよ.
(2)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(3)$\mathrm{P}$は直線$\mathrm{BC}$上の点で,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとする.$\mathrm{P}$の座標を求めよ.また$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
早稲田大学 私立 早稲田大学 2012年 第1問
$[ア]$~$[エ]$にあてはまる数または式を解答用紙の所定欄に記入せよ.

(1)次の等式
\[ \log_3x - \frac{1}{\log_9x} = (-1)^x \]
を満たす正の整数$x$の値は$[ア]$である
(2)定数関数でない関数$f(x)$が
\[ f(x) = x^2 - \int_0^1 (f(t)+x)^2dt \]
を満たすとき,$f(x)=[イ]$である.
(3)$0<\theta \leqq 180^\circ$とする.数列$\{a_n\}$を次で定める.
\[ a_1 = \cos\theta, \quad a_{n+1}= a_n^2-1 \]
このとき,$a_4 = a_5$となる$\cos\theta$の最大値は$[ウ]$である.
(4)体積が$1$の正四面体の各辺の中点を頂点とする正八面体の体積は$[エ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$\mathrm{ABCDE}$を$1$辺の長さが$1$の正方形$\mathrm{ABCD}$を底面とし,$4$個の正三角形を側面とする正四角錐とする.
(図は省略)

(1)$\triangle \mathrm{CDE}$の重心を$\mathrm{G}$とする.ベクトル$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AG}} = [セ]$となる.
(2)$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}$が平面$\alpha$上の任意のベクトルと垂直なとき,$\overrightarrow{p}$は平面$\alpha$と垂直であるという.$\overrightarrow{p} = a\, \overrightarrow{\mathrm{AB}} + b\, \overrightarrow{\mathrm{AD}} + c\, \overrightarrow{\mathrm{AE}}\ (a,\ b,\ c\text{は実数})$が$\triangle \mathrm{CDE}$を含む平面と垂直なとき,$a:b:c=[ソ]$である.よって,$|\overrightarrow{p}|=1$かつ$\overrightarrow{p} \cdot \overrightarrow{\mathrm{AD}} > 0$となるように$a,\ b,\ c$を定めると,$\overrightarrow{p} = [タ]$となる.
(3)正四角錐$\mathrm{ABCDE}$の$\triangle \mathrm{CDE}$に,各辺の長さが$1$の正四面体$\mathrm{CDEF}$を貼り付ける.ベクトル$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AF}}=[チ]$となる.また,$\mathrm{H}$を辺$\mathrm{EC}$の中点とすると,$\overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HF}}= [ツ]$であり,$\triangle \mathrm{AHF}$の面積は[テ]である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
$\mathrm{O}$を原点とする座標空間において,$4$点
\[ \mathrm{A}_1(1,\ 1,\ 1),\quad \mathrm{B}_1(-1,\ -1,\ 1),\quad \mathrm{C}_1(1,\ -1,\ -1),\quad \mathrm{D}_1(-1,\ 1,\ -1) \]
を考えると,立体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$は正四面体である.このとき,以下の設問に答えよ.

(1)正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面に平行な平面$z=-1+h (0 \leqq h \leqq 2)$で切ったときに出来る図形の面積を$S(h)$とすると,
\[ S(h)=-[$34$]h^2+[$35$]h \]
と表され,$S(h)$は$h=[$36$]$のとき最大値$[$37$]$をとる.(このときの図形はペトリー多角形と呼ばれている.)さらに,
\[ V_1=\int_0^2 S(h) \, dh=\frac{[$38$]}{[$39$]} \]
とおくと,$V_1$は正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$の体積となっている.
(2)三角形$\mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,三角形$\mathrm{C}_1 \mathrm{D}_1 \mathrm{A}_1$,三角形$\mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1$の重心をそれぞれ$\mathrm{A}_2$,$\mathrm{B}_2$,$\mathrm{C}_2$,$\mathrm{D}_2$とする.このとき,立体$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$は再び,正四面体となる.(このことを,正四面体は自己双対であるという.)同様に,$n$を自然数として,三角形$\mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,三角形$\mathrm{C}_n \mathrm{D}_n \mathrm{A}_n$,三角形$\mathrm{D}_n \mathrm{A}_n \mathrm{B}_n$,三角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n$の重心をそれぞれ$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$とする.このとき,
\[ \overrightarrow{\mathrm{OA}}_1+\overrightarrow{\mathrm{OA}}_2+\cdots +\overrightarrow{\mathrm{OA}}_n=\frac{[$40$]}{[$41$]} \left\{ 1-\left( -\frac{[$42$]}{[$43$]} \right)^n \right\} \overrightarrow{\mathrm{OA}}_1 \]
である.また,正四面体$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の表面積$S_n$と体積$V_n$は,それぞれ,
\[ S_n=[$44$] \cdot [$45$]^{-[$46$]n+\frac{[$47$]}{2}},\quad V_n=[$48$] \cdot [$49$]^{-[$50$]n+[$51$]} \]
である.
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
産業医科大学 私立 産業医科大学 2012年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$に対して,$x$以下の最大の整数を$[x]$で表す.例えば$[3]=3$,$[3.14]=3$,$[-3.14]=-4$である.実数$x$について,方程式$4x-3[x]=0$の解の個数は$[ ]$であり,方程式$x^2-3x+[3x]=0$の解の個数は$[ ]$である.
(2)$a,\ b,\ c$を$a+b+c=\pi$を満たす正の実数とするとき,$\sin (a) \sin (b) \sin (c)$の最大値は$[ ]$である.
(3)原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$について$\triangle \mathrm{ABC}$は正三角形である.$\triangle \mathrm{ABC}$を$1$つの面にもつ正四面体の他の頂点$\mathrm{D}$の座標は$[ ]$または$[ ]$である.
(4)定積分$\displaystyle \int_3^4 \frac{6x+5}{x^3-3x-2} \, dx$の値は$[ ]$である.
(5)$123$から$789$までの$3$桁の数から,$1$つを無作為に選び出すとき,同じ数字が$2$つ以上含まれている確率は$[ ]$である.
(6)数直線上の点$\mathrm{P}$は,原点$\mathrm{O}$を出発して,次のルールに従って移動するとする.
「$1$つのさいころを振り,$3$以下の目が出たときは右に$1$,$5$以上の目が出たときは左に$1$,それぞれ動く.また,$4$の目が出たときは動かない.点$\mathrm{P}$の座標が$-1$になったら,さいころを振るのを止め点$\mathrm{P}$はそこにとどまる.それ以外のときは,さいころをまた振る.」
さいころを多くとも$3$回振り移動も終えた後の,点$\mathrm{P}$の座標の期待値は$[ ]$である.
京都女子大学 私立 京都女子大学 2012年 第2問
$1$辺の長さが$6$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OC}$を$2:1$に内分する点を$\mathrm{Q}$とするとき,次の問に答えよ.

(1)$\triangle \mathrm{APQ}$の$3$辺$\mathrm{AP}$,$\mathrm{PQ}$,$\mathrm{QA}$の長さを求めよ.
(2)$\triangle \mathrm{APQ}$の面積$S$を求めよ.
(3)正四面体$\mathrm{OABC}$の体積$V$を求めよ.
スポンサーリンク

「正四面体」とは・・・

 まだこのタグの説明は執筆されていません。