タグ「正五角形」の検索結果

2ページ目:全21問中11問~20問を表示)
西南学院大学 私立 西南学院大学 2014年 第2問
正五角形$\mathrm{ABCDE}$がある.点$\mathrm{P}$は最初,頂点$\mathrm{A}$にあり,さいころを投げるたびに出た目の数だけ正五角形の頂点を反時計まわりに移動する.このとき,

(1)さいころを$1$回投げたあと,点$\mathrm{P}$が頂点$\mathrm{A}$にある確率は$\displaystyle \frac{[カ]}{[キ]}$である.

(2)さいころを$3$回投げたあと,点$\mathrm{P}$が頂点$\mathrm{A}$にある確率は$\displaystyle \frac{[クケ]}{[コサシ]}$である.

(3)さいころを$3$回投げたあと,点$\mathrm{P}$が初めて頂点$\mathrm{A}$に止まる確率は$\displaystyle \frac{[ス]}{[セソ]}$である.
愛知県立大学 公立 愛知県立大学 2014年 第2問
$1$辺の長さが$a_1$の正五角形を$\mathrm{P}_1$とする.$\mathrm{P}_1$の対角線を$1$辺とする正五角形を$\mathrm{P}_2$とし,$\mathrm{P}_2$の対角線を$1$辺とする正五角形を$\mathrm{P}_3$とする.このように対角線から次の正五角形を繰り返してつくるものとする.このとき,$n>1$における$\mathrm{P}_n$の$1$辺の長さを$a_n$とし,以下の問いに答えよ.

(1)数列$\{a_n\}$の一般項を$a_1$と$n$を用いて表せ.
(2)整数の数列$\{x_n\}$と$\{y_n\}$を用いて
\[ a_n=\frac{x_n+\sqrt{5}y_n}{2} \]
と書けるとする.このとき,$x_{n+2}$を$x_n$と$x_{n+1}$を用いて表せ.
高知大学 国立 高知大学 2012年 第3問
点Oを中心とする半径1の円に内接する正十角形の隣り合う頂点をA,Bとする.また,$\angle \text{OAB}$の二等分線と直線OBの交点をCとする.次の問いに答えよ.

(1)$\triangle$ABCと$\triangle$OABは相似になることを示せ.
(2)辺ABの長さを求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$を求めよ.
(4)半径1の円に内接する正五角形の一辺の長さを求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
$0 \leqq \theta \leqq \pi$は$\cos(2\theta) = \cos(3\theta)$を満たす.
次の問に答えよ.

(1)$\alpha - \beta = 2 \theta,\ \alpha+\beta = 3\theta$を満たす$\alpha,\ \beta$を$\theta$を用いて表せ.
(2)$\theta$の値を求めよ.
(3)$\cos\theta$の値を求めよ.
(4)$1$辺の長さが$1$の正五角形$\mathrm{ABCDE}$の外接円の半径を$R$とする.$R^2$の値を求めよ.
杏林大学 私立 杏林大学 2012年 第2問
$[タ]$の解答は解答群の中から最も適当なものを$1$つ選べ.

一辺の長さが$2$である正五角形$\mathrm{OABCD}$において,$\displaystyle \overrightarrow{a}=\frac{1}{2} \overrightarrow{\mathrm{OA}}$,$\displaystyle \overrightarrow{d}=\frac{1}{2} \overrightarrow{\mathrm{OD}}$,$k=|\overrightarrow{\mathrm{DA}}|$とする.

(1)$\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{DB}}$と$|\overrightarrow{\mathrm{DB}}|=k$より,
\[ \overrightarrow{\mathrm{OB}}=k \overrightarrow{a}+[ア] \overrightarrow{d} \]
が成り立つ.また,
\[ \overrightarrow{\mathrm{OC}}=[イ] \overrightarrow{a}+k \overrightarrow{d} \]
と表せる.
(2)$|\overrightarrow{\mathrm{OB}}|=k$より,
\[ k=[ウ]+\sqrt{[エ]},\quad \overrightarrow{a} \cdot \overrightarrow{d}=\frac{[オ]-\sqrt{[カ]}}{[キ]} \]
となる.
また,直線$\mathrm{OA}$と直線$\mathrm{BC}$の交点を$\mathrm{E}$とすると,
\[ \overrightarrow{\mathrm{OE}}=\left( [ク]+\sqrt{[ケ]} \right) \overrightarrow{a} \]
であり,点$\mathrm{E}$は線分$\mathrm{BC}$を$2:[コ]+\sqrt{[サ]}$に外分する.
(3)正五角形$\mathrm{OABCD}$の内接円の半径を$\alpha$とすると,
\[ \alpha^2=[シ]+\frac{[ス]}{[セ]} \sqrt{[ソ]} \]
である.点$\mathrm{O}$を極とし,半直線$t \overrightarrow{\mathrm{OA}} (t \geqq 0)$を始線としたとき,極座標$(r,\ \theta)$を用いて直線$\mathrm{AD}$の極方程式は$r=[タ]$と表わされる.

$[タ]$の解答群
\setstretch{2.5}
\[ \begin{array}{lll}
① 2 \cos \theta+\displaystyle\frac{2}{\alpha} \sin \theta \phantom{AAA} & ② 2 \cos \theta-\displaystyle\frac{2}{\alpha} \sin \theta \phantom{AAA} & ③ 2 \cos \theta+2\alpha \sin \theta \\
④ 2 \cos \theta-2 \alpha \sin \theta & ⑤ \displaystyle\frac{2\alpha}{\alpha \cos \theta+\sin \theta} & ⑥ \displaystyle\frac{2\alpha}{\alpha \cos \theta-\sin \theta} \\
④chi \displaystyle\frac{2}{\cos \theta+\alpha \sin \theta} & \maruhachi \displaystyle\frac{2}{\cos \theta-\alpha \sin \theta} &
\end{array} \]
\setstretch{1.4}
福井大学 国立 福井大学 2011年 第1問
1辺の長さが1の正十二面体を考える.点O,A,B,C,D, \\
E,F,Gを図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
ただし,1辺の長さが1の正五角形の対角線の長さは \\
$\displaystyle \frac{1+\sqrt{5}}{2}$であることを用いてよい.なお,正十二面体では, \\
すべての面は合同な正五角形であり, 各頂点は$3$つの正五 \\
角形に共有されている.
\img{366_2547_2011_1}{55}

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{BE}}$,$\overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OE}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{DF}}$と$\overrightarrow{\mathrm{EF}}$のなす角を求めよ.
福井大学 国立 福井大学 2011年 第2問
$1$辺の長さが$1$の正十二面体を考える.点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$, \\
$\mathrm{E}$,$\mathrm{F}$を図に示す正十二面体の頂点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$, \\
$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ. \\
なお,正十二面体では,すべての面は合同な正五角形であり, \\
各頂点は$3$つの正五角形に共有されている.
\img{366_2546_2011_1}{36}


(1)$1$辺の長さが$1$の正五角形の対角線の長さを求めて, \\
内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(2)$\overrightarrow{\mathrm{CD}}$,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{O}$から平面$\mathrm{ABD}$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.さらにその長さを求めよ.
鳥取大学 国立 鳥取大学 2010年 第4問
平面上に一辺の長さが1の正五角形があり,その頂点を順にA,B,C,D,Eとする.次の問いに答えよ.

(1)辺BCと線分ADは平行であることを示せ.
(2)線分ACと線分BDの交点をFとする.四角形AFDEはどのような形であるか,その名称と理由を答えよ.
(3)線分AFと線分CFの長さの比を求めよ.
(4)$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{BC}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
鳥取大学 国立 鳥取大学 2010年 第2問
平面上に一辺の長さが1の正五角形があり,その頂点を順にA,B,C,D,Eとする.次の問いに答えよ.

(1)辺BCと線分ADは平行であることを示せ.
(2)線分ACと線分BDの交点をFとする.四角形AFDEはどのような形であるか,その名称と理由を答えよ.
(3)線分AFと線分CFの長さの比を求めよ.
(4)$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{BC}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
鳥取大学 国立 鳥取大学 2010年 第1問
平面上に一辺の長さが1の正五角形があり,その頂点を順にA,B,C,D,Eとする.次の問いに答えよ.

(1)辺BCと線分ADは平行であることを示せ.
(2)線分ACと線分BDの交点をFとする.四角形AFDEはどのような形であるか,その名称と理由を答えよ.
(3)線分AFと線分CFの長さの比を求めよ.
(4)$\overrightarrow{\mathrm{AB}}=\overrightarrow{a},\ \overrightarrow{\mathrm{BC}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{CD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
スポンサーリンク

「正五角形」とは・・・

 まだこのタグの説明は執筆されていません。