タグ「正の数」の検索結果

6ページ目:全65問中51問~60問を表示)
立教大学 私立 立教大学 2012年 第2問
正の数$a$に対して,空間内の$3$点$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{a}},\ 0,\ 0 \right)$,$\mathrm{B} (0,\ \sqrt{a},\ 0)$,$\mathrm{C} (0,\ 0,\ \sqrt{a})$を頂点とする三角形$\mathrm{ABC}$が与えられている.このとき,次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の$3$辺の長さ$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$a$で表せ.
(2)$\angle \mathrm{BAC}$を$\theta$とおく.$\cos \theta$を$a$で表せ.
(3)三角形$\mathrm{ABC}$の面積$S$を$a$で表せ.
(4)$\displaystyle \frac{S}{\mathrm{BC}}$が最小値をとるときの$a$の値とその最小値を求めよ.
明治大学 私立 明治大学 2012年 第4問
曲線$y=\log x$上の点$\mathrm{P}(t,\ \log t)$における接線を$\ell$とする.このとき,以下の問に答えよ.

(1)直線$\ell$の方程式を求めよ.
以下では,曲線$y=ax^2-b$は点$\mathrm{P}$を通り,$\mathrm{P}$において$\ell$に接しているとする.ただし,$a$と$b$は正の数である.曲線$y=ax^2-b$と$x$軸で囲まれた図形の面積を$S$とする.
(2)$S$を$a,\ b$を用いて表せ.
(3)$a,\ b$を$t$で表し,$t$のとりうる値の範囲を求めよ.
(4)$S$の最大値を求めよ.なお,$S$がその最大値をとる$t$の値も求めること.
昭和大学 私立 昭和大学 2012年 第3問
次の各問に答えよ.

(1)正の数$a,\ b$が$a^3+b^3=5$を満たすとき,$a+b$のとりうる値の範囲を求めよ.
(2)$x>0,\ x \neq 1$のとき,$\displaystyle 1+\frac{1}{\log_2x}-\frac{3}{\log_3x}<0$を満たす$x$の範囲を求めよ.
(3)点$\mathrm{P}$が楕円$x^2+5(y-1)^2=5$上を動くとき,原点$\mathrm{O}$と点$\mathrm{P}$を結ぶ線分の長さの最大値を求めよ.
(4)$A=\left( \begin{array}{cc}
3 & -5 \\
2 & -3
\end{array} \right),\ I=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.$(I+A)^{2012}=mI+nA$となる実数$m,\ n$の値を求めよ.
岡山県立大学 公立 岡山県立大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$が成り立つとき,次の問いに答えよ.

(i) $(a+b)(b+c)(c+a)$の値を求めよ.
(ii) $\displaystyle \frac{1}{a^7}+\frac{1}{b^7}+\frac{1}{c^7}=\frac{1}{a^7+b^7+c^7}$が成り立つことを示せ.

(2)$a,\ b,\ c$が正の数で,$a \neq 1,\ c \neq 1$のとき,次の等式が成り立つことを示せ.$\displaystyle \log_a b=\frac{\log_c b}{\log_c a}$
(3)不等式$9^x+3^{x+1}-4 \leqq 0$を解け.
信州大学 国立 信州大学 2011年 第1問
正の数$a_1,\ a_2,\ \cdots,\ a_n$と自然数$n \geqq 2$に対して,次の不等式が成り立つことを数学的帰納法で証明しなさい.
\[ \sum_{i=1}^n \frac{a_i}{1+a_i} > \frac{a_1 +a_2 + \cdots +a_n}{1+a_1 +a_2+\cdots+a_n} \]
群馬大学 国立 群馬大学 2011年 第4問
$\triangle \mathrm{ABC}$の内部に点$\mathrm{P}$があって,$\ell \overrightarrow{\mathrm{AP}}+m \overrightarrow{\mathrm{BP}}+n \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}}$を満たすとする.ただし,$\ell,\ m,\ n$は正の数とする.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の面積を$1$とするとき,$\triangle \mathrm{BCP}$,$\triangle \mathrm{CAP}$,$\triangle \mathrm{ABP}$それぞれの面積を求めよ.
群馬大学 国立 群馬大学 2011年 第4問
$\triangle \mathrm{ABC}$の内部に点$\mathrm{P}$があって,$\ell \overrightarrow{\mathrm{AP}}+m \overrightarrow{\mathrm{BP}}+n \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}}$を満たすとする.ただし,$\ell,\ m,\ n$は正の数とする.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の面積を$1$とするとき,$\triangle \mathrm{BCP}$,$\triangle \mathrm{CAP}$,$\triangle \mathrm{ABP}$それぞれの面積を求めよ.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
北海道医療大学 私立 北海道医療大学 2011年 第1問
以下の問に答えよ.

(1)$2$つの異なる正の数の積が$9$であり,かつ,それらのうち大きい方の$2$倍と小さい方の和が$12$であるという.これらの異なる正の数のうち,大きい方を$x$,小さい方を$y$とするとき,以下の問に答えよ.

(i) $x,\ y$に関する連立方程式を求めよ.
(ii) $x$に関する$2$次方程式を求めよ.
(iii) $x,\ y$の値を求めよ.
\mon[$\tokeishi$] $x^3+y^3$の値を求めよ.

(2)$f(x)=x^2-2ax+4a+5$とする.ただし,$a$は定数とする.

(i) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値を,次の$a$の各範囲においてそれぞれ求めよ.
$① a \leqq -3 \qquad ② -3<a \leqq 2 \qquad ③ a>2$
(ii) 関数$y=f(x)$の$-3 \leqq x \leqq 2$における最小値が$4$であるとき,$a$の値を求めよ.
(iii) $2$次方程式$f(x)=0$が$-3$以上,かつ,$2$以下である異なる$2$つの実数解を持つとき,$a$の値の範囲を求めよ.
京都薬科大学 私立 京都薬科大学 2011年 第4問
四面体$\mathrm{OABC}$について,次の$[ ]$にあてはまる正の数を記入せよ.ただし,$[ア]:[イ]$,$[ウ]:[エ]$および$[オ]:[カ]$については,もっとも簡単な整数比で表すこと.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,線分$\mathrm{OG}$を$3:2$に内分する点を$\mathrm{D}$,直線$\mathrm{BD}$と平面$\mathrm{AOC}$の交点を$\mathrm{E}$,直線$\mathrm{OE}$と直線$\mathrm{AC}$との交点を$\mathrm{F}$とする.このとき,
\[ \overrightarrow{\mathrm{OG}}=[ ] \overrightarrow{\mathrm{OA}}+[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となり,
\[ \overrightarrow{\mathrm{BD}}=[ ] \overrightarrow{\mathrm{OA}}-[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となる.また,$\mathrm{OE}:\mathrm{EF}=[ア]:[イ]$,$\mathrm{BD}:\mathrm{DE}=[ウ]:[エ]$であり,二つの四面体$\mathrm{ABFO}$と$\mathrm{CEFB}$の体積比は$[オ]:[カ]$である.
(2)$\angle \mathrm{COB}={30}^\circ$,$\angle \mathrm{AOC}={45}^\circ$,$\angle \mathrm{CAO}={60}^\circ$,$\mathrm{OA}=\sqrt{3}+1$,$\mathrm{BC}=\sqrt{2}$とすると,$\mathrm{OC}=[ ]$,$\mathrm{CA}=[ ]$であり,$\mathrm{OB}$は$[$*$]$または$[$**$]$である.ただし,$[$*$]>[$**$]$とする.
スポンサーリンク

「正の数」とは・・・

 まだこのタグの説明は執筆されていません。