タグ「正の数」の検索結果

5ページ目:全65問中41問~50問を表示)
神戸大学 国立 神戸大学 2013年 第4問
$a,\ b$を実数とする.次の問いに答えよ.

(1)$f(x)=a \cos x+b$が,
\[ \int_0^\pi f(x) \, dx=\frac{\pi}{4}+\int_0^\pi \{f(x)\}^3 \, dx \]
をみたすとする.このとき,$a,\ b$がみたす関係式を求めよ.
(2)(1)で求めた関係式をみたす正の数$b$が存在するための$a$の条件を求めよ.
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が$2$である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)$a$を正の数とする.円$x^2+y^2=a$と$C$の交点の個数が,$a$の値によってどのように変わるかを調べよ.
徳島大学 国立 徳島大学 2013年 第1問
$A=\left( \begin{array}{cc}
a & -a \\
-b & b
\end{array} \right),\ E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とし,$n$を自然数とする.また,
\[ E+A+A^2+\cdots +A^n=\left( \begin{array}{cc}
p_n & q_n \\
r_n & s_n
\end{array} \right) \]
とおく.

(1)$A^2=cA$となる定数$c$を$a,\ b$を用いて表せ.
(2)行列$A^n$を$a,\ b$および$n$を用いて表せ.
(3)$a,\ b$は正の数で$a+b<1$を満たす.$p_n$を$a,\ b$および$n$を用いて表せ.
(4)$\displaystyle a=\frac{1}{2},\ b=\frac{1}{3}$のとき,極限値$\displaystyle \lim_{n \to \infty}p_n$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2013年 第3問
$-\infty<x<\infty$で定義される$2$つの関数$f(x)=|\cos x|\sin x$,$g(x)=e^{-x}f(x)$について,以下の問に答えよ.

(1)$y=f(x)$のグラフを描け.ただし,$x$の範囲は,$0 \leqq x \leqq 4\pi$とせよ.
(2)すべての$x$に対し,$f(x)=f(x+T)$を満たす正の数$T$のうち,最小の値$\omega$を求めよ.
(3)$\displaystyle \int_0^{\frac{\pi}{2}} g(x) \, dx$を求めよ.
(4)極限値$\displaystyle \lim_{n \to \infty}\int_0^{n \omega}g(x) \, dx$を求めよ.
同志社大学 私立 同志社大学 2013年 第3問
$\triangle \mathrm{OAB}$において$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.$2$つの正の数$s,\ t$に対して,$\overrightarrow{\mathrm{OC}}=s \overrightarrow{a}+t \overrightarrow{b}$となるように点$\mathrm{C}$を定める.また,線分$\mathrm{AC}$および線分$\mathrm{BC}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とし,直線$\mathrm{OM}$および直線$\mathrm{ON}$が線分$\mathrm{AB}$と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$\overrightarrow{a} \cdot \overrightarrow{b}=5$のとき,次の問いに答えよ.

(1)線分$\mathrm{AB}$の長さ,および$\triangle \mathrm{OAB}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$を用いて表せ.
(4)$\triangle \mathrm{OPQ}$の面積を$S_2$とする.$S_2$を$s,\ t$を用いて表せ.
(5)$\displaystyle S_2=\frac{1}{4}S_1$となるための$s,\ t$の条件を求め,$s,\ t$がその条件をみたしながら動くとき,点$\mathrm{C}$の存在する範囲を求めよ.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)等差数列$\{a_n\}$において,初項から第$10$項までの和が$-8$,初項から第$21$項までの和が$14$である.この数列の初項$a_1$は$[ア]$で,公差は$[イ]$である.
(2)$2 \log_3 4+\log_9 5-\log_3 8=\log_3 x$の解は$x=[ウ]$である.

(3)$\displaystyle x=\frac{1}{\sqrt{7}-\sqrt{5}},\ y=\frac{1}{\sqrt{7}+\sqrt{5}}$のとき,$x^3+y^3$の値は$[エ]$である.

(4)$\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{3}$となる自然数の組$(x,\ y)$で$x \geqq y$を満たすものをすべてあげると$(x,\ y)=[オ]$である.
(5)正の数$k$と角$\theta$に対して,$\sin \theta,\ \cos \theta$が$2$次方程式$5x^2-kx+2=0$の解となるような$k$の値は$[カ]$である.
(6)三角形$\mathrm{ABC}$において,$\displaystyle \frac{\sin A}{\sqrt{2}}=\frac{\sin B}{2}=\frac{\sin C}{1+\sqrt{3}}$であるとき,$\cos C$の値は$[キ]$である.
(7)整式$P(x)$を$2x^2+9x-5$で割ると余りが$3x+5$であり,$x-2$で割ると余りが$-3$であるとき,$P(x)$を$x^2+3x-10$で割ると,余りは$[ク]$である.
(8)座標空間内に$4$点$\mathrm{A}(-1,\ 2,\ 1)$,$\mathrm{B}(-1,\ -1,\ 4)$,$\mathrm{C}(1,\ -1,\ 1)$,$\mathrm{D}(x,\ y,\ z)$がある.これら$4$点が同一平面上にあり,かつこれらを頂点とする四角形がひし形であるのは,$(x,\ y,\ z)=[ケ]$のときである.
岡山県立大学 公立 岡山県立大学 2013年 第1問
$a,\ b$をいずれも正の数とする.次の問いに答えよ.

(1)$x$を正の数とするとき,次の不等式を証明せよ.
\[ a^{x+1}+b^{x+1} \geqq ab^x+a^xb \]
(2)$n$を自然数とするとき,次の不等式を証明せよ.
\[ \left( \frac{a+b}{2} \right)^n \leqq \frac{a^n+b^n}{2} \]
(3)$a+b \sqrt{2}=4$のとき,$a^4+4b^4$の最小値を求めよ.
佐賀大学 国立 佐賀大学 2012年 第2問
正の数からなる数列$\{a_n\}$に対し,$\displaystyle S_n=\sum_{k=1}^n a_k$とする.すべての自然数$n$に対して,$\displaystyle \frac{a_n+3}{2}=\sqrt{3S_n}$が成り立つとき,次の問いに答えよ.

(1)$a_1$を求めよ.
(2)$a_{n+1}$を$S_n$を用いて表せ.
(3)$n$が自然数であるとき,数学的帰納法を用いて,$S_n=3n^2$が成り立つことを証明せよ.
宮城教育大学 国立 宮城教育大学 2012年 第3問
$a$が正の数で$a^{\frac{1}{2}}+a^{-\frac{1}{2}}=3$を満たしているとき,
\[ \frac{a^{\frac{3}{2}}+a^{-\frac{3}{2}}-3}{a^2+a^{-2}-2} \]
の値を求めよ.
法政大学 私立 法政大学 2012年 第2問
$f(x)=x^2-5$として,数列$\{a_n\}$を次のように定義する.\\
\quad $a_1=3$,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線が$x$軸と交わる点の$x$座標を$a_{n+1}$とする$(n=1,\ 2,\ 3,\ \cdots)$。\\
\quad 次の問いに答えよ.

(1)$a_{n+1}$を$a_n$で表せ.
(2)命題$P(n)$を$\lceil \sqrt{5} < a_{n+1} < a_n \rfloor$とするとき,すべての正の整数$n$に対して$P(n)$が成り立つことを数学的帰納法によって証明せよ.
(3)次の不等式が共に成り立つ1より小さい正の数$r$が存在することを示せ.

(4)$a_{n+1}-\sqrt{5} \leqq r(a_n-\sqrt{5}) \quad (n=1,\ 2,\ 3,\ \cdots)$
(5)$a_n -\sqrt{5} \leqq r^{n-1} \quad (n= 1,\ 2,\ 3,\ \cdots)$
スポンサーリンク

「正の数」とは・・・

 まだこのタグの説明は執筆されていません。