タグ「正の数」の検索結果

4ページ目:全65問中31問~40問を表示)
高知大学 国立 高知大学 2014年 第1問
$f(x)=x(x-1)(x+1)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$が極大,極小になるときの$x$と,その極大値,極小値を求めよ.
(2)$y=f(x)$のグラフの概形をかけ.
(3)$x$が$\displaystyle |x-1|<\frac{1}{2}$をみたすとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$3$の円の内部に含まれることを示せ.
(4)$1$以下の正の数$r$に対して,$x$が$|x-1|<r$の範囲を動くとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$10r$の円の内部に含まれることを示せ.
防衛医科大学校 国立 防衛医科大学校 2014年 第1問
以下の問に答えよ.

(1)$\displaystyle \left[ \frac{1}{3}x+1 \right]=[2x-1]$を満たす実数$x$の範囲を求めよ.ここで,$[x]$は$x$を超えない最大の整数である.
(2)$\triangle \mathrm{ABC}$と,$\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+k \overrightarrow{\mathrm{MC}}=\overrightarrow{\mathrm{0}} (k>0)$を満たす点$\mathrm{M}$が存在する.点$\mathrm{A}$と点$\mathrm{M}$を通る直線と辺$\mathrm{BC}$の交点を$\mathrm{N}$とする.$\displaystyle \frac{3}{4} \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BN}}$のとき,$k$はいくらか.
(3)初項が正の数である等比数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が,漸化式
\[ a_{n+1}+\left( \frac{1}{2} \right)^{2n+1}=3a_1a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たしているとき,以下の問に答えよ.

(i) $\{a_n\}$の初項と公比を求めよ.
(ii) 無限級数$\displaystyle \sum_{k=1}^\infty a_k$が収束するかどうか調べよ.収束する場合には,その和を求めよ.
高知大学 国立 高知大学 2014年 第4問
$f(x)=x(x-1)(x+1)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$が極大,極小になるときの$x$と,その極大値,極小値を求めよ.
(2)$y=f(x)$のグラフの概形をかけ.
(3)$x$が$\displaystyle |x-1|<\frac{1}{2}$をみたすとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$3$の円の内部に含まれることを示せ.
(4)$1$以下の正の数$r$に対して,$x$が$|x-1|<r$の範囲を動くとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$10r$の円の内部に含まれることを示せ.
信州大学 国立 信州大学 2014年 第4問
$a$を正の数とする.このとき,次の関係式をみたす関数$f(x)$を求めよ.
\[ f(x)=\int_0^{\frac{\pi}{a}} f(t) \cos (at-2ax) \, dt+1 \]
千葉工業大学 私立 千葉工業大学 2014年 第2問
次の各問に答えよ.

(1)$0 \leqq \theta \leqq \pi$とする.$F=2 \sin \theta (\sin \theta-\sqrt{3} \cos \theta)$は
\[ \begin{array}{rcl}
F &=& [ア]-\sqrt{3} \sin 2\theta-\cos 2\theta \\
&=& [ア]-[イ] \sin \left( 2\theta+\frac{[ウ]}{[エ]} \pi \right)
\end{array} \]
と変形できる.ここで,$\displaystyle 0 \leqq \frac{[ウ]}{[エ]} \pi <2\pi$とする.$F$は$\displaystyle \theta=\frac{[オ]}{[カ]} \pi$のとき,最大値$[キ]$をとる.
(2)$a$を正の定数とし,$f(x)=2x^3-ax^2+27$とする.$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]ax \]
であり,$f(x)$は$\displaystyle x=\frac{[コ]}{[サ]}a$のとき,極小値$\displaystyle 27-\frac{[シ]}{[スセ]} a^{[ソ]}$をとる.どのような正の数$x$に対しても不等式$2x^3+27>ax^2$が成り立つような$a$の値の範囲は$0<a<[タ]$である.
愛知工業大学 私立 愛知工業大学 2014年 第1問
次の$[ ]$を適当に補え.

(1)$ab(a+b)-2bc(b-c)+ca(2c-a)-3abc$を因数分解すると$[ア]$となる.
(2)自然数$n$をいくつかの$1$と$2$の和で表すときの表し方の総数を$a(n)$とする.ただし,和の順序を変えた表し方は同じ表し方とする.例えば,$4=2+2$,$4=2+1+1$,$4=1+1+1+1$であるから,$a(4)=3$である.このとき,$a(9)=[イ]$,$a(2014)=[ウ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が$\displaystyle S_n=\frac{n}{n+1}$であるとき,$a_n=[エ]$,$\displaystyle \sum_{k=1}^n \frac{1}{a_k}=[オ]$である.
(4)$0 \leqq \theta \leqq \pi$とする.$\sin \theta+\cos \theta=t$とすると,$t$のとりうる値の範囲は$[カ] \leqq t \leqq [キ]$であり,$\sin \theta+\cos \theta+2 \sin 2\theta$の最大値は$[ク]$,最小値は$[ケ]$である.
(5)$\log_2 64=[コ]$である.また,$x$を$1$でない正の数とするとき,$\log_4 x^2-\log_x 64 \leqq 1$をみたす$x$の範囲は$[サ]$である.
(6)$f(x)=\sin 2x$とするとき,$f^\prime(x)=[シ]$である.また,$\displaystyle \int_0^{\frac{\pi}{6}} \sin^2 2x \cos 2x \, dx=[ス]$である.
広島修道大学 私立 広島修道大学 2014年 第2問
次の問に答えよ.

(1)$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}$,$\mathrm{C}$を頂点とする$\triangle \mathrm{ABC}$において,点$\mathrm{B}$から対辺に下ろした垂線の方程式は$x-3y+2=0$であり,点$\mathrm{C}$から対辺に下ろした垂線の方程式は$4x+2y-5=0$である.このとき,$3$直線$\mathrm{AB}$,$\mathrm{AC}$,$\mathrm{BC}$の方程式を求めよ.
(2)$a$を定数とする.関数$\displaystyle y=\frac{1}{2}x^3-\frac{15}{4}x^2+8x+5$のグラフと直線$y=2x+a$が共有点を$3$個もち,それらの$x$座標がすべて正の数となるような$a$の値の範囲を求めよ.
安田女子大学 私立 安田女子大学 2014年 第4問
$x,\ y$は正の値をとる変数で,$x+y=a$($a$は定数)を満たす.$\displaystyle z=\log_2 \frac{1}{x}+\log_\frac{1}{2}y$とするとき,次の問いに答えよ.

(1)$z$を$x$と$y$の積$xy$を用いて表せ.
(2)$z$の最小値を$a$を用いて表せ.
(3)$x+y=a$を満たす全ての正の数$x,\ y$に対して,$z>0$であるとき,$a$のとり得る値の範囲を求めよ.
北里大学 私立 北里大学 2014年 第1問
$2$次関数$y=-x^2+3$のグラフを$C_1$とし,$1$次関数$y=2x+3$のグラフを$\ell_1$とする.以下の$2$つの条件を満たす放物線を$C_2$とする.

条件$1.$ $C_2$は$C_1$を平行移動した放物線であり,点$(1,\ 2)$は$C_1$と$C_2$の共有点である.
条件$2.$ $C_2$の頂点は$\ell_1$上にあり,その$x$座標は正の数である.

$C_1$と$C_2$の両方に接する直線を$\ell_2$とする.

(1)$C_2$をグラフとする$2$次関数は$y=[ア]$である.
(2)$\ell_2$をグラフとする$1$次関数は$y=[イ]$である.
(3)$C_1$と$C_2$および$\ell_2$で囲まれた部分の面積は$[ウ]$である.
滋賀県立大学 公立 滋賀県立大学 2014年 第1問
$2$次関数$f(x)=ax^2+bx+c$($a,\ b,\ c$は定数で$a \neq 0$とする)がある.$d$を正の数として,$f(0)=p$,$f(d)=q$,$f(2d)=r$とおく.

(1)$a,\ b,\ c$を$p,\ q,\ r,\ d$で表せ.
(2)$\displaystyle S_1=\int_0^{2d} f(x) \, dx$を$p,\ q,\ r,\ d$で表せ.
(3)$\displaystyle S_2=\int_0^{2d} |f(x)| \, dx$とおく.$p=1$,$q=0$,$r=3$および$d=1$のとき,$S_2-S_1$を求めよ.
スポンサーリンク

「正の数」とは・・・

 まだこのタグの説明は執筆されていません。