タグ「正の数」の検索結果

2ページ目:全65問中11問~20問を表示)
東京医科大学 私立 東京医科大学 2016年 第1問
次の問いに答えよ.

(1)任意の正の数$t$に対して,座標平面上の$3$点$\mathrm{P}_t(3-t,\ 6+2t)$,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 6)$を頂点とする三角形$\mathrm{P}_t \mathrm{OA}$を考える.$\angle \mathrm{P}_t \mathrm{OA}=\theta_t$とすれば,
\[ \lim_{t \to \infty} \cos \theta_t=\frac{[ア]}{[イ]} \]
である.
(2)$a$を正の定数とする.$x$についての$2$次方程式$x^2+ax+4a=0$の$1$つの解が他の解の$4$倍であるとき,
\[ a=[ウエ] \]
である.
東京医科大学 私立 東京医科大学 2016年 第2問
次の問いに答えよ.

(1)平面上の$2$つのベクトル$\overrightarrow{a},\ \overrightarrow{b}$が条件
\[ |\overrightarrow{a}|=|\overrightarrow{b}|=1 \quad \text{かつ} \quad |\overrightarrow{a}-\overrightarrow{b}|^2=\frac{25}{44} \]
をみたすとする.ベクトル$\overrightarrow{c}$が正の数$t$を用いて
\[ \overrightarrow{c}=\overrightarrow{a}+t(\overrightarrow{b}-\overrightarrow{a}) \]
と表され,かつ$|\overrightarrow{c}|=\sqrt{5}$であるならば
\[ t=\frac{[アイ]}{[ウ]} \]
である.
(2)座標平面上の放物線$\displaystyle C_1:y=\frac{4}{5}x^2$と円$C_2:x^2+(y-a)^2=a^2$($a$は正の定数)が$3$つの共有点をもつような$a$の値の範囲は
\[ a>\frac{[エ]}{[オ]} \]
である.
京都薬科大学 私立 京都薬科大学 2016年 第3問
次の$[ ]$にあてはまる式を記入せよ.

空間の異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$に対して,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.線分$\mathrm{AB}$を$k:l$に内分する点を$\mathrm{C}$とおくと
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{a}+[イ] \overrightarrow{b} \]
と表される.また,線分$\mathrm{AB}$を$m:n (m>n)$に外分する点を$\mathrm{D}$とおくと
\[ \overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{a}+[エ] \overrightarrow{b} \]
と表される.さらに,$pm-qn \neq 0$をみたす正の数$p,\ q$について,$\overrightarrow{\mathrm{OA}^\prime}=p \overrightarrow{a}$,$\overrightarrow{\mathrm{OB}^\prime}=q \overrightarrow{b}$をみたす$2$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$をとり,直線$\mathrm{OC}$,$\mathrm{OD}$がそれぞれ直線$\mathrm{A}^\prime \mathrm{B}^\prime$と交わる点を$\mathrm{C}^\prime$,$\mathrm{D}^\prime$とおくと$\overrightarrow{\mathrm{OC}^\prime}$,$\overrightarrow{\mathrm{OD}^\prime}$はそれぞれ
\[ \overrightarrow{\mathrm{OC}^\prime}=[オ] \overrightarrow{a}+[カ] \overrightarrow{b},\quad \overrightarrow{\mathrm{OD}^\prime}=[キ] \overrightarrow{a}+[ク] \overrightarrow{b} \]
と表される.よって,$\mathrm{C}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[ケ]:[コ]$に内分する点で,$\mathrm{D}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[サ]:[シ]$に外分する点である.
ここで,点$\mathrm{C}$が線分$\mathrm{AB}$を内分する比の値$\displaystyle \frac{k}{l}$と,点$\mathrm{D}$が線分$\mathrm{AB}$を外分する比の値$\displaystyle \frac{m}{n}$について,これら$2$つの比の商を
\[ c(\mathrm{A},\ \mathrm{B},\ \mathrm{C},\ \mathrm{D})=\frac{\displaystyle\frac{k}{l}}{\displaystyle\frac{m}{n}}=\frac{kn}{lm} \]
とおくとき,点$\mathrm{C}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を内分する比の値と点$\mathrm{D}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を外分する比の商$c(\mathrm{A}^\prime,\ \mathrm{B}^\prime,\ \mathrm{C}^\prime,\ \mathrm{D}^\prime)$は,$k,\ l,\ m,\ n$を用いると$[ス]$と表せる.
京都産業大学 私立 京都産業大学 2016年 第3問
$xy$平面上の$2$つの曲線

$C_1:y=e^x-2$
$C_2:y=\log x$

について以下の問いに答えよ.ただし,$\log$は自然対数であり,$e$は自然対数の底とする.

(1)$s$を実数,$t$を正の数とする.$C_1$上の点$(s,\ e^s-2)$における$C_1$の接線の方程式,および$C_2$上の点$(t,\ \log t)$における$C_2$の接線の方程式を求めよ.
(2)$C_1$と$C_2$の両方に接する直線は$2$本存在する.それぞれの直線の方程式を求めよ.
(3)$(2)$の$2$直線それぞれの$C_2$との接点の座標を求めよ.
(4)$(2)$の$2$直線の交点の$x$座標を求めよ.
(5)$C_2$と$(2)$の$2$直線で囲まれた部分の面積を求めよ.
群馬大学 国立 群馬大学 2015年 第2問
数列$\{a_n\}$,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$は,初項がそれぞれ$a_1=a$,$b_1=b$,$c_1=c$,$d_1=d$で与えられ,漸化式
\[ a_{n+1}=2a_n+b_n,\quad b_{n+1}=a_n+2b_n,\quad c_{n+1}=2c_n+d_n,\quad d_{n+1}=c_n+2d_n \]
を満たす.ただし,$a,\ b,\ c,\ d$は$\displaystyle \frac{c}{a}<\frac{d}{b}$を満たす正の数とする.

(1)$\displaystyle \frac{c}{a}<\frac{c+d}{a+b}<\frac{d}{b}$が成り立つことを証明せよ.
(2)すべての自然数$n$について$\displaystyle \frac{c_n}{a_n}<\frac{d_n}{b_n}$が成り立つことを,数学的帰納法によって証明せよ.
(3)$a=2,\ b=1$のとき,数列$\{a_n\}$の一般項を求めよ.
群馬大学 国立 群馬大学 2015年 第2問
数列$\{a_n\}$,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$は,初項がそれぞれ$a_1=a$,$b_1=b$,$c_1=c$,$d_1=d$で与えられ,漸化式
\[ a_{n+1}=2a_n+b_n,\quad b_{n+1}=a_n+2b_n,\quad c_{n+1}=2c_n+d_n,\quad d_{n+1}=c_n+2d_n \]
を満たす.ただし,$a,\ b,\ c,\ d$は$\displaystyle \frac{c}{a}<\frac{d}{b}$を満たす正の数とする.

(1)$\displaystyle \frac{c}{a}<\frac{c+d}{a+b}<\frac{d}{b}$が成り立つことを証明せよ.
(2)すべての自然数$n$について$\displaystyle \frac{c_n}{a_n}<\frac{d_n}{b_n}$が成り立つことを,数学的帰納法によって証明せよ.
(3)$a=2,\ b=1$のとき,数列$\{a_n\}$の一般項を求めよ.
群馬大学 国立 群馬大学 2015年 第1問
数列$\{a_n\}$,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$は,初項がそれぞれ$a_1=a$,$b_1=b$,$c_1=c$,$d_1=d$で与えられ,漸化式
\[ a_{n+1}=2a_n+b_n,\quad b_{n+1}=a_n+2b_n,\quad c_{n+1}=2c_n+d_n,\quad d_{n+1}=c_n+2d_n \]
を満たす.ただし,$a,\ b,\ c,\ d$は$\displaystyle \frac{c}{a}<\frac{d}{b}$を満たす正の数とする.

(1)$\displaystyle \frac{c}{a}<\frac{c+d}{a+b}<\frac{d}{b}$が成り立つことを証明せよ.
(2)すべての自然数$n$について$\displaystyle \frac{c_n}{a_n}<\frac{d_n}{b_n}$が成り立つことを,数学的帰納法によって証明せよ.
(3)$a=2,\ b=1$のとき,数列$\{a_n\}$の一般項を求めよ.
長岡技術科学大学 国立 長岡技術科学大学 2015年 第3問
関数$f(x)={(\log x)}^2$とおく.$t$を正の数とするとき,下の問いに答えなさい.

(1)$f^\prime(x)$を求めなさい.
(2)$x=t$における$y=f(x)$の接線の方程式を求めなさい.
(3)$(2)$で求めた接線と$y$軸との交点の$y$座標$g(t)$を求めなさい.
(4)$g(t)$の最小値と,その最小値を与える$t$の値を求めなさい.
群馬大学 国立 群馬大学 2015年 第2問
$x,\ y,\ z$は正の数で$\displaystyle x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4$を満たす.

(1)$x+y=a,\ xy=b$とおくとき,$a,\ b$を$z$を用いて表せ.
(2)$z$のとりうる値の範囲を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$a$は$2^{2 \log_4 48-\log_2 \frac{3}{4}}$である.ただし,$\log_{10}2=0.3010$とする.このとき,

(1)$a$の値を整数で表すと$[$53$][$54$]$である.
(2)$a^{30}$は$[$55$][$56$]$桁の数である.
(3)$b$は,$b^{50}$を小数で表すと小数第$25$位に初めて$0$でない数字が現れる正の数である.このとき$\displaystyle \left( \frac{b}{a} \right)^4$を小数で表すと,小数第$[$57$][$58$]$位に初めて$0$でない数字が現れる.
スポンサーリンク

「正の数」とは・・・

 まだこのタグの説明は執筆されていません。