タグ「概形」の検索結果

4ページ目:全86問中31問~40問を表示)
九州大学 国立 九州大学 2014年 第3問
座標平面上の楕円
\[ \frac{(x+2)^2}{16}+\frac{(y-1)^2}{4}=1 \quad \cdots\cdots① \]
を考える.以下の問いに答えよ.

(1)楕円$①$と直線$y=x+a$が交点をもつときの$a$の値の範囲を求めよ.
(2)$|x|+|y|=1$を満たす点$(x,\ y)$全体がなす図形の概形をかけ.
(3)点$(x,\ y)$が楕円$①$上を動くとき,$|x|+|y|$の最大値,最小値とそれを与える$(x,\ y)$をそれぞれ求めよ.
佐賀大学 国立 佐賀大学 2014年 第4問
$xy$平面上に$x=2 \cos 2\theta$,$y=2 \cos 3\theta (0 \leqq \theta \leqq \pi)$と媒介変数表示された曲線$C$を考える.このとき,次の問に答えよ.

(1)$t=\cos \theta$とおいて,$x$と$y$を$t$の式で表せ.
(2)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$において,$y$を$x$の式で表せ.また,$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$において,$y$を$x$の式で表せ.
(3)曲線$C$の概形を描け.
佐賀大学 国立 佐賀大学 2014年 第2問
$xy$平面上に$x=2 \cos 2\theta$,$y=2 \cos 3\theta (0 \leqq \theta \leqq \pi)$と媒介変数表示された曲線$C$を考える.このとき,次の問に答えよ.

(1)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$において,$y$を$x$の式で表せ.また,$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$において,$y$を$x$の式で表せ.
(2)曲線$C$の概形を描け.
(3)曲線$C$が囲む領域の面積を求めよ.
滋賀医科大学 国立 滋賀医科大学 2014年 第3問
$\displaystyle f(x)=\frac{\sin x}{e^x},\ g(x)=\frac{\cos x}{e^x}$とする.

(1)関数$f(x)$の第$4$次までの導関数を求めよ.
(2)$0 \leqq x \leqq 2\pi$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の概形をかけ.
(3)$x \geqq 0$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$の交点を$x$座標の小さい順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$とするとき,$\mathrm{P}_n$の座標を求めよ.
(4)$\mathrm{P}_n$の$x$座標を$a_n$とする.$a_n \leqq x \leqq a_{n+1}$の範囲において,$2$つの曲線$y=f(x)$,$y=g(x)$で囲まれた部分の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
山梨大学 国立 山梨大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)=e^{1+\sin^2 x}$の導関数$f^\prime(x)$を求めよ.
(2)条件$a_1=1$,$a_2=2$,$a_{n+2}=3a_{n+1}-2a_n (n=1,\ 2,\ 3,\ \cdots)$で定められる数列$\{a_n\}$の一般項を求めよ.
(3)関数$\displaystyle f(x)=\frac{4x}{x^2+1}$の増減,極値,グラフの凹凸,変曲点および漸近線を調べ,曲線$y=f(x)$の概形をかけ.
山形大学 国立 山形大学 2014年 第1問
$-a<x<a$で定義された曲線$C:y=x \sqrt{a^2-x^2}$がある.ただし$a$は正の定数とする.以下の問いに答えよ.

(1)$y$の増減を調べ,曲線$C$の概形をかけ.
(2)曲線$C$と直線$\displaystyle L:y=\frac{1}{\sqrt{3}}x$が$3$つの共有点を持つような定数$a$の値の範囲を求めよ.またそのときの共有点の$x$座標をすべて求めよ.
(3)$3$つの共有点のうち,$x$座標の値が最も大きい点を$\mathrm{P}$とする.点$\mathrm{P}$における曲線$C$の接線と,直線$L$および$y$軸で囲まれる三角形が正三角形になるときの定数$a$の値を求め,その正三角形の面積を求めよ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
大阪教育大学 国立 大阪教育大学 2014年 第3問
曲線$\displaystyle y=\frac{x^2}{x^2+3}$を$C$とし,座標平面上の原点を$\mathrm{O}$とする.以下の問に答えよ.

(1)曲線$C$の凹凸,変曲点,漸近線を調べ,その概形をかけ.
(2)曲線$C$の接線で原点を通るものをすべて求めよ.また,その接点を求めよ.
(3)$\mathrm{P}$を原点を中心とする半径$\displaystyle \frac{\sqrt{17}}{4}$の円周上の点とする.点$\mathrm{P}$を点$\displaystyle \mathrm{A} \left( 0,\ \frac{\sqrt{17}}{4} \right)$から時計回りに動かすとき,原点以外に線分$\mathrm{OP}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
(4)$\mathrm{Q}$を原点を中心とする半径$2$の円周上の点とする.点$\mathrm{Q}$を点$\mathrm{B}(0,\ 2)$から時計回りに動かすとき,原点以外に線分$\mathrm{OQ}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
香川大学 国立 香川大学 2014年 第4問
曲線$C_1:y=x^3-2x^2$,$C_2:y=x^2+ax+1$について,次の問に答えよ.

(1)曲線$C_1$の概形をかけ.
(2)曲線$C_1$と$x$軸の共有点で原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C_1$の接線$\ell$の方程式を求めよ.
(3)$(2)$で求めた直線$\ell$が曲線$C_2$の接線となるような$a$の値をすべて求めよ.
(4)$a$が$(3)$で求めた値のうち最小の値をとるとき,曲線$C_2$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第4問
関数$f(x)=xe^{2-x}$について,次の問に答えよ.

(1)曲線$C:y=f(x)$の概形をかけ.
(2)曲線$C$の接線のうち傾きが最小のものを$\ell$とするとき,$\ell$の方程式を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「概形」とは・・・

 まだこのタグの説明は執筆されていません。