タグ「極限」の検索結果

5ページ目:全244問中41問~50問を表示)
東京工業大学 国立 東京工業大学 2015年 第4問
$xy$平面上を運動する点$\mathrm{P}$の時刻$t (t>0)$における座標$(x,\ y)$が
\[ x=t^2 \cos t,\quad y=t^2 \sin t \]
で表されている.原点を$\mathrm{O}$とし,時刻$t$における$\mathrm{P}$の速度ベクトルを$\overrightarrow{v}$とする.

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\theta (t)$とするとき,極限値$\displaystyle \lim_{t \to \infty} \theta (t)$を求めよ.
(2)$\overrightarrow{v}$が$y$軸に平行になるような$t (t>0)$のうち,最も小さいものを$t_1$,次に小さいものを$t_2$とする.このとき,不等式$t_2-t_1<\pi$を示せ.
東京大学 国立 東京大学 2015年 第6問
$n$を正の整数とする.以下の問いに答えよ.

(1)関数$g(x)$を次のように定める.
\[ g(x)=\left\{ \begin{array}{ll}
\displaystyle\frac{\cos (\pi x)+1}{2} & (|x| \leqq 1 \text{のとき}) \\
0 & (|x|>1 \text{のとき})
\end{array} \right. \]
$f(x)$を連続な関数とし,$p,\ q$を実数とする.$\displaystyle |x| \leqq \frac{1}{n}$をみたす$x$に対して$p \leqq f(x) \leqq q$が成り立つとき,次の不等式を示せ.
\[ p \leqq n \int_{-1}^1 g(nx)f(x) \, dx \leqq q \]
(2)関数$h(x)$を次のように定める.
\[ h(x)=\left\{ \begin{array}{ll}
\displaystyle -\frac{\pi}{2} \sin (\pi x) & (|x| \leqq 1 \text{のとき}) \\
0 & (|x|>1 \text{のとき})
\end{array} \right. \]
このとき,次の極限を求めよ.
\[ \lim_{n \to \infty} n^2 \int_{-1}^1 h(nx) \log (1+e^{x+1}) \, dx \]
旭川医科大学 国立 旭川医科大学 2015年 第2問
$n$を正の整数とする.$2n \pi \leqq x \leqq (2n+1) \pi$の範囲で関数$f(x)=x \sin x$を考える.関数$f(x)$が極大値をとる$x$を$a_n$とし,曲線$y=f(x)$の変曲点を$(b_n,\ f(b_n))$とする.次の問いに答えよ.

(1)$a_n$と$b_n$はそれぞれ唯$1$つあって,$\displaystyle 2n \pi<b_n<2n \pi+\frac{\pi}{2}<a_n<(2n+1) \pi$を満たすことを示せ.
(2)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}(a_n-2n \pi) \qquad (2) \ \lim_{n \to \infty}(b_n-2n \pi) \qquad (3) \ \lim_{n \to \infty}f(b_n) \]
(3)曲線$y=f(x) (2n \pi \leqq x \leqq (2n+1) \pi)$と$x$軸とで囲まれた図形を,$3$つの直線$x=b_n$,$\displaystyle x=2n \pi+\frac{\pi}{2}$,$x=a_n$によって$4$つの部分に分ける.その面積を左から順に$S_1$,$S_2$,$S_3$,$S_4$とするとき,$(S_3+S_4)-(S_1+S_2)$の値を求めよ.
(4)以下の極限を求めよ.
\[ (1) \ \lim_{n \to \infty}S_1 \qquad (2) \ \lim_{n \to \infty}S_3 \qquad (3) \ \lim_{n \to \infty}(S_4-S_2) \]
岡山大学 国立 岡山大学 2015年 第3問
自然数$n=1,\ 2,\ 3,\ \cdots$に対して,関数$f_n(x)=x^{n+1}(1-x)$を考える.

(1)曲線$y=f_n(x)$上の点$(a_n,\ f_n(a_n))$における接線が原点を通るとき,$a_n$を$n$の式で表せ.ただし,$a_n>0$とする.
(2)$0 \leqq x \leqq 1$の範囲で,曲線$y=f_n(x)$と$x$軸とで囲まれた図形の面積を$B_n$とする.また,$(1)$で求めた$a_n$に対して,$0 \leqq x \leqq a_n$の範囲で,曲線$y=f_n(x)$,$x$軸,および直線$x=a_n$で囲まれた図形の面積を$C_n$とする.$B_n$および$C_n$を$n$の式で表せ.
(3)$(2)$で求めた$B_n$および$C_n$に対して,極限値$\displaystyle \lim_{n \to \infty} \frac{C_n}{B_n}$を求めよ.ただし,$\displaystyle \lim_{n \to \infty} \left( 1+\frac{1}{n} \right)^n$が自然対数の底$e$であることを用いてよい.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.$n=1,\ 2,\ 3,\ \cdots$に対し,座標平面の$3$点
\[ (2n\pi,\ 0),\quad \left( \left(2n+\frac{1}{2} \right) \pi,\ \frac{1}{{\left\{ \left( 2n+\displaystyle\frac{1}{2} \right)\pi \right\}}^a} \right),\quad ((2n+1)\pi,\ 0) \]
を頂点とする三角形の面積を$A_n$とし,
\[ B_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin x}{x^a} \, dx,\qquad C_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin^2 x}{x^a} \, dx \]
とおく.

(1)$n=1,\ 2,\ 3,\ \cdots$に対し,次の不等式が成り立つことを示せ.
\[ \frac{2}{\{(2n+1)\pi\}^a} \leqq B_n \leqq \frac{2}{(2n\pi)^a} \]
(2)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{B_n}$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{C_n}$を求めよ.
新潟大学 国立 新潟大学 2015年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定める.
\[ \begin{array}{ll}
f_1(x)=1-\displaystyle\frac{x^2}{2} \phantom{\frac{[ ]}{2}} & \\
f_n(x)=\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が偶数のとき}) \\
f_n(x)=1-\int_0^x f_{n-1}(t) \, dt \phantom{\frac{[ ]}{2}} & (n \text{が}3 \text{以上の奇数のとき})
\end{array} \]
次の問いに答えよ.ただし必要があれば,$0<x \leqq 1$のとき$\displaystyle x-\frac{x^3}{3!}<\sin x<x$が成り立つことを用いてよい.

(1)関数$f_2(x),\ f_3(x)$を求めよ.
(2)$0 \leqq x \leqq 1$のとき,次の不等式が成り立つことを示せ.
\[ -\frac{x^4}{4!} \leqq f_1(x)-\cos x \leqq \frac{x^4}{4!} \]
(3)$0 \leqq x \leqq 1$のとき,次の不等式
\[ -\frac{x^{2m+2}}{(2m+2)!} \leqq f_{2m-1}(x)-\cos x \leqq \frac{x^{2m+2}}{(2m+2)!} \]
がすべての自然数$m$に対して成り立つことを示せ.
(4)極限値$\displaystyle \lim_{m \to \infty} f_{2m-1} \left( \frac{\pi}{6} \right)$を求めよ.
徳島大学 国立 徳島大学 2015年 第3問
$c$を実数とする.数列$\{a_n\}$は次を満たす.
\[ a_1=1,\quad a_{n+1}=\frac{{a_n}^2+cn-4}{3n} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3$を$c$を用いて表せ.
(2)$a_1+a_3 \leqq 2a_2$のとき,不等式$a_n \geqq 3 (n=3,\ 4,\ 5,\ \cdots)$を示せ.
(3)$a_1+a_3=2a_2$のとき,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
弘前大学 国立 弘前大学 2015年 第3問
次の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{1}{2}$のとき,次の不等式が成り立つことを示せ.
\[ -x^2-x \leqq \log (1-x) \leqq -x \]
(2)数列$\{a_n\}$を次によって定める.
\[ \begin{array}{rcl}
a_1 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 1^2} \right) \\
a_2 &=& \displaystyle \left( 1-\frac{1}{2 \cdot 2^2} \right) \left( 1-\frac{2}{2 \cdot 2^2} \right) \phantom{\displaystyle\frac{[ ]}{2}} \\
& \vdots & \\
a_n &=& \displaystyle \left( 1-\frac{1}{2n^2} \right) \left( 1-\frac{2}{2n^2} \right) \cdots \left( 1-\frac{n}{2n^2} \right)
\end{array} \]
このとき,極限$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
滋賀医科大学 国立 滋賀医科大学 2015年 第3問
$a$を$\displaystyle 0<a<\frac{\pi}{2}$をみたす定数とし,方程式
\[ x(1-\cos x)=\sin (x+a) \]
を考える.

(1)$n$を正の整数とするとき,上の方程式は$\displaystyle 2n \pi<x<2n \pi+\frac{\pi}{2}$の範囲でただ$1$つの解をもつことを示せ.
(2)$(1)$の解を$x_n$とおく.極限$\displaystyle \lim_{n \to \infty} (x_n-2n \pi)$を求めよ.
(3)極限$\displaystyle \lim_{n \to \infty} \sqrt{n}(x_n-2n \pi)$を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$を用いてよい.
三重大学 国立 三重大学 2015年 第4問
実数$x$に対し
\[ a_n(x)=\left( \frac{-x^2+8x-19}{x^2-6x+5} \right)^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.ただし$x$は$1$でも$5$でもないとする.以下の問いに答えよ.

(1)$\displaystyle \lim_{n \to \infty} a_n(x)$が収束する$x$の範囲と,そのときの極限値を求めよ.
(2)$\displaystyle \int_2^3 a_1(x) \, dx$を求めよ.
スポンサーリンク

「極限」とは・・・

 まだこのタグの説明は執筆されていません。