タグ「極限」の検索結果

23ページ目:全244問中221問~230問を表示)
奈良教育大学 国立 奈良教育大学 2010年 第3問
次の極限値を求めよ.

(1)$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \log \left( 1+\frac{k}{n} \right)$
(2)$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n \sin \frac{k}{n} \pi$
徳島大学 国立 徳島大学 2010年 第2問
数列$\{a_n\}$が$\displaystyle a_1=1,\ a_{n+1}=\frac{1}{2}\left( a_n+\frac{3}{a_n} \right) \ (n=1,\ 2,\ 3,\ \cdots)$で定められるとき,次の問いに答えよ.

(1)$\displaystyle 0<a_2-\sqrt{3}<\frac{1}{2}$を示せ.
(2)$n$が2以上の自然数であるとき,不等式$\displaystyle 0<a_n-\sqrt{3}< \left( \frac{1}{2} \right)^{n-1}$を数学的帰納法によって証明せよ.
(3)数列$\{a_n\}$の極限値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第2問
定数$a$,関数$f(x)$,および数列$\{x_n\}$を次のように定める.
\begin{eqnarray}
& & 1<a<2,\quad f(x)=\frac{1}{2}(3x^2-x^3) \nonumber \\
& & x_1=a,\quad x_{n+1}=f(x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}

(1)関数$f(x)$の増減を調べよ.
(2)すべての自然数$n$に対して$1<x_n<2$を示せ.
(3)すべての自然数$n$に対して$x_{n+1}>x_n$を示せ.
(4)次の不等式を満たす$n$に無関係な定数$b \ (0<b<1)$があることを示せ.
\[ 2-x_{n+1} \leqq b(2-x_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)数列$\{x_n\}$が収束することを示し,その極限値を求めよ.
長崎大学 国立 長崎大学 2010年 第5問
$a,\ b$を$a>b>0$を満たす定数とし,
\[ \left\{
\begin{array}{l}
a_1=a, a_{n+1}=a_n^2+b_n^2 \quad (n=1,\ 2,\ 3,\ \cdots) \\
b_1=b, b_{n+1}=2a_nb_n \quad (n=1,\ 2,\ 3,\ \cdots)
\end{array}
\right. \]
で定義される数列$\{a_n\},\ \{b_n\}$を考える.次の問いに答えよ.

(1)数列$\{c_n\}$を$c_n=a_n+b_n \ (n=1,\ 2,\ 3,\ \cdots)$により定義するとき,その一般項$c_n$を$a,\ b$を用いて表せ.
(2)数列$\{a_n\},\ \{b_n\}$の一般項$a_n,\ b_n$を$a,\ b$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty}\frac{b_n}{a_n}$が存在するかどうかを調べ,存在する場合はその値を求めよ.
(4)無限級数$\displaystyle \sum_{n=1}^\infty a_n$が収束するとき,$a+b<1$が成り立つことを証明せよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2010年 第2問
$n$は2以上の自然数とする.1つの袋と1つの箱がある.袋には白玉3個と赤玉2個が入っており,箱には何も入っていない.次の操作を考える.

袋から玉を1個取り出し,白玉なら袋に戻し,赤玉なら箱に入れる.

この操作を$n$回繰り返す.$n$回目の操作の後,箱に入っている赤玉の個数を$X$とする.

(1)$k$を$n$以下の自然数とする.$k$回目の操作では赤玉を取り出し$k$回目以外の$n-1$回の操作では白玉を取り出す確率を$n$と$k$を用いて表せ.次に,$X=1$である確率$p_n$を求めよ.
(2)$X=2$である確率$q_n$を求めよ.
(3)$X$の期待値$E_n$を求めよ.また,極限$\displaystyle \lim_{n \to \infty}\frac{1}{n}\log (2-E_n)$を求めよ.
電気通信大学 国立 電気通信大学 2010年 第1問
$n$を自然数とし,$x$を変数とする関数
\[ f_n(x)=(nx+n+1)e^x,\quad g_n(x)=(nx+n-1)e^{-x} \]
を考える.以下の問いに答えよ.

(1)$f_n(x)$の増減を調べ,極値を求めよ.
(2)$g_n(x)$の増減を調べ,極値を求めよ.
(3)$x$軸と$y$軸および曲線$y=f_n(x)$で囲まれた図形の面積$S_n$を求めよ.
(4)$x$軸と$y$軸および曲線$y=g_n(x)$で囲まれた図形の面積$T_n$を求めよ.ただし,$n \geqq 2$とする.
(5)極限値$\displaystyle \lim_{n \to \infty}\frac{T_n}{S_n}$を求めよ.
茨城大学 国立 茨城大学 2010年 第1問
以下の各問に答えよ.

(1)$n$を$3$以上の自然数とする.整式$x^n$を$x^2-4x+3$で割ったときの余りを求めよ.
(2)数列
\[ 1,\quad 1+3+1,\quad 1+3+9+3+1,\quad 1+3+9+27+9+3+1,\quad \cdots \]
の第$n$項から第$2n$項までの和を求めよ.ただし,$n$は自然数とする.
(3)微分可能な関数$f(x)$が$f(0)=0$かつ$f^\prime(0)=\pi$を満たすとき,次の極限値を求めよ.
\[ \lim_{\theta \to 0} \frac{f(1-\cos 2\theta)}{\theta^2} \]
防衛医科大学校 国立 防衛医科大学校 2010年 第2問
以下の問に答えよ.

(1)$0<x<1$で,$(\sqrt{2}-1)x+1<\sqrt{1+x}<\sqrt{2}$が成り立つことを示せ.
(2)$0<a<1$に対して定積分$\displaystyle \int_a^1 \sqrt{1-x} \, dx$,$\displaystyle \int_a^1 x\sqrt{1-x} \, dx$を計算せよ.
(3)極限値$\displaystyle \lim_{a \to 1-0}\frac{\displaystyle \int_a^1 \sqrt{1-x^2} \, dx}{(1-a)^{\frac{3}{2}}}$を求めよ.
大阪教育大学 国立 大阪教育大学 2010年 第2問
自然数$n$に対して,
\[ I_n=\int_0^{\frac{\pi}{2}}\sin^n x \, dx \]
とおく.次の問に答えよ.

(1)定積分$I_1,\ I_2,\ I_3$を求めよ.
(2)次の不等式を証明せよ.
\[ I_n \geqq I_{n+1}\]
(3)次の漸化式が成り立つことを証明せよ.
\[ I_{n+2}=\frac{n+1}{n+2}I_n \]
(4)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} \]
福井大学 国立 福井大学 2010年 第2問
表の出る確率が$p$,裏の出る確率が$1-p$のコインがある.このコインを投げ,その結果により,駒が2点A,Bの間を移動し,ポイントを獲得することを繰り返す次のようなゲームを行う.

ルールa) \ 駒はゲームを始めるとき点Aにいる.
ルールb) \ 駒はコイン投げで表が出ればそのときいる点にとどまり,裏が出ればもう一方の点に移動する.
ルールc) \ $k$回目のコイン投げの結果,駒が点Aにいるときは$3k$ポイント新たに獲得し,点Bにいるときは$k$ポイント新たに獲得する.$(k=1,\ 2,\ 3,\ \cdots)$

$n$を自然数として,以下の問いに答えよ.

(1)$n$回コインを投げた結果,駒が点Aにいる確率を$a_n$とおく.$a_n$を求めよ.
(2)$k$回目のコイン投げの結果により新たに獲得するポイントの期待値を$E_k$とおく.$0<p<1$のとき,$\displaystyle \sum_{k=1}^n E_k$を$n$と$p$を用いて表せ.
(3)(1)で求めた$a_n$を$p$の関数と考え,$f_n(p)$と書くとき,次の極限値を求めよ.
\[ \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m f_n \left( \frac{k}{2m} \right) \]
スポンサーリンク

「極限」とは・・・

 まだこのタグの説明は執筆されていません。