タグ「極限」の検索結果

22ページ目:全244問中211問~220問を表示)
愛媛大学 国立 愛媛大学 2011年 第5問
関数$f(x)=\cos x-x \sin x,\ g_n(x)=(x+n \pi)\sin x-\cos x \ (n=1,\ 2,\ 3,\ \cdots)$について,次の問いに答えよ.ただし,必要があれば,$\displaystyle 0<x<\frac{\pi}{2}$を満たすすべての$x$について$\tan x>x$が成り立つことを用いてよい.

(1)すべての自然数$n$,実数$x$に対して$g_n(x)=(-1)^{n+1}f(x+n \pi)$が成り立つことを示せ.
(2)自然数$n$に対して,方程式$g_n(x)=0$は$0 \leqq x \leqq \pi$の範囲においてただ$1$つの解をもつことを示せ.
(3)(2)におけるただ$1$つの解を$x_n$とする.$x_n$は$\displaystyle 0<x_n<\frac{1}{n\pi}$を満たすことを示せ.
(4)$y_n=n\pi+x_n \ (n=1,\ 2,\ 3,\ \cdots)$とおく.定積分
\[ S_n=\int_{y_n}^{y_{n+1}}|f(x)| \, dx \]
を,$n,\ x_n$および$x_{n+1}$を用いて表せ.
(5)極限$\displaystyle \lim_{n \to \infty}\frac{S_n}{n}$を求めよ.
立教大学 私立 立教大学 2011年 第1問
下記の空欄イ~ホにあてはまる数を記入せよ.

(1)方程式$3\cos^3 \theta-5 \cos^2 \theta-4 \cos \theta+4=0$,および不等式$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$をみたす$\theta$に対して,$\cos \theta=[イ]$である.
(2)公差$\displaystyle \frac{1}{5}$,初項$-8$の等差数列$a_1,\ a_2,\ \cdots$を
\[ a_1 \;|\; a_2,\ a_3 \;|\; a_4,\ a_5,\ a_6 \;|\; a_7,\ a_8,\ a_9,\ a_{10} \;|\; \cdots \]
とグループ分けする.第$101$番目のグループに属する数の和は$[ロ]$である.
(3)空間に$3$点$\mathrm{A}(2,\ 2,\ 2)$,$\mathrm{B}(1,\ 2,\ 1)$,$\mathrm{C}(2,\ y,\ 1)$が与えられている.三角形$\mathrm{ABC}$が直角三角形になるのは$y=[ハ]$のときである.

(4)極限$\displaystyle \lim_{x \to 0} \frac{\sin (1-\cos x)}{x^2}$の値は$[ニ]$である.

(5)$1$個のさいころを$4$回続けて投げるとき,$3$回以上連続して同じ目が出る確率は$[ホ]$である.
日本女子大学 私立 日本女子大学 2011年 第4問
点$\mathrm{O}$を中心とし,長さ$2r$の線分$\mathrm{AB}$を直径とする円の周上を動く点$\mathrm{P}$がある.$\triangle \mathrm{ABP}$の面積を$S_1$,扇形$\mathrm{OPB}$の面積を$S_2$とするとき,次の問いに答えよ.

(1)$\displaystyle \angle \mathrm{PAB}=\theta (0<\theta<\frac{\pi}{2})$とするとき,$S_1$と$S_2$を求めよ.
(2)$\mathrm{P}$が$\mathrm{B}$に限りなく近づくとき,$\displaystyle \frac{S_1}{S_2}$の極限値を求めよ.
産業医科大学 私立 産業医科大学 2011年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)角$\theta$が$0^\circ \leqq \theta \leqq {90}^\circ$,$\displaystyle \tan \theta=\frac{4}{3}$を満たすとき,$\displaystyle \tan \frac{\theta}{2}$の値は$[ ]$である.
(2)$4$次方程式$2x^4+7x^3+4x^2+7x+2=0$の実数解のうち最大のものは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \{ \sqrt[3]{(n^3-n^2)^2}-2n \sqrt[3]{n^3-n^2}+n^2 \}$の値は$[ ]$である.
(4)円$x^2-8x+y^2-8y+30=0$に接する傾き$1$の$2$つの直線を$\ell_1$,$\ell_2$とする.放物線$y=2x^2+3x-2$と$2$直線$\ell_1$,$\ell_2$によって囲まれる図形の面積は$[ ]$である.ただし,この図形は原点を含むものとする.
(5)$x$を正の実数とするとき,関数$\displaystyle y=\left( \frac{2}{x} \right)^x$の導関数$\displaystyle \frac{dy}{dx}$は$[ ]$である.
(6)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \sqrt{1-2 \sin 2x+3 \cos^2 x} \, dx$の値は$[ ]$である.
(7)バスケットボールのフリースローを,$\mathrm{A}$,$\mathrm{B}$の$2$人がそれぞれ$3$回ずつ試みて,成功した回数が多い方が勝ちとする.$\mathrm{A}$の成功率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$の成功率は$\displaystyle \frac{2}{3}$であるとき,$\mathrm{A}$が勝つ確率は$[ ]$である.ただし,$\mathrm{A}$,$\mathrm{B}$の試行は独立な試行と考える.
(8)$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の数字が書かれた$8$枚のカードがある.カードをもとに戻すことなく,$1$枚ずつ$8$枚すべてを取り出し,左から順に横に一列に並べる.このとき,数字$k$のカードの左側に並んだ$k$より小さい数字のカードの枚数が$k-1$である確率は$[ ]$である.ただし,$k$は$1$から$7$までの整数のいずれかとする.
会津大学 公立 会津大学 2011年 第1問
$(1)$,$(2)$の問いに答えよ.また,$(3)$から$(5)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int x \sin x^2 \, dx=[イ]$
(ii) $\displaystyle \int_0^2 xe^x \, dx=[ロ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{3^n+4^n}{3^{n+1}+4^{n+1}}=[ハ] \]
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において$3 \sin x+\cos 2x+1=0$のとき,$x=[ニ]$である.
(4)$A=\left( \begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array} \right),\ B=\left( \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \right)$のとき,$(A+B)(A-B)=[ホ]$である.
(5)Oを原点とする座標空間に2点A$(1,\ 2,\ 1)$,B$(2,\ 2,\ 0)$をとる.このとき,$\cos \angle \text{AOB}=[ヘ]$,$\triangle$AOBの面積は[ト]である.
九州歯科大学 公立 九州歯科大学 2011年 第3問
初項を$a_1=16$とする数列$\{a_n\}$の第$1$項から第$n$項までの和$S_n$が$S_n=2n^2-6n+20$で与えられるとき,次の問いに答えよ.

(1)$n \geqq 2$に対して,$a_n$を$n$を用いて表せ.
(2)数列$\{b_n\}$を$b_1=a_1$,$b_2=a_2+a_3$,$b_3=a_4+a_5+a_6$,$b_4=a_7+a_8+a_9+a_{10}$,$\cdots$と定義する.このとき,$b_n=a_{k+1}+a_{k+2}+\cdots +a_{k+n}$をみたす$k$を$n$を用いて表せ.
(3)数列$\{b_n\}$の第$1$項から第$n$項までの和を$T_n$とするとき,極限値$\displaystyle A=\lim_{n \to \infty}\frac{T_n}{n^4}$と極限値$\displaystyle B=\lim_{n \to \infty}\frac{T_n-An^4}{n^3}$の値を求めよ.
(4)$\displaystyle C=\sum_{n=1}^{24}(T_n-An^4-Bn^3)$の値を求めよ.ただし,$A$と$B$は(3)で求めた極限値である.
京都大学 国立 京都大学 2010年 第6問
$n$個のボールを2$n$個の箱へ投げ入れる.各ボールはいずれかの箱に入るものとし,どの箱に入る確率も等しいとする.どの箱にも1個以下のボールしか入っていない確率を$p_n$とする.このとき,極限値$\displaystyle\lim_{n \to \infty}\frac{\log p_n}{n}$を求めよ.
秋田大学 国立 秋田大学 2010年 第3問
$\log x$は$x$の自然対数であり,自然対数の底$e$の値は$2.718\cdots\cdots$である.$f_0(x)=1$とし,自然数$n$に対して$f_n(x)=(\log x)^n$とする.次の問いに答えよ.

(1)方程式$f_n(x)=x$が異なる3つの実数解をもつときの$n$をすべて求めよ.必要ならば,すべての自然数$n$に対して$\displaystyle \lim_{x \to \infty} \frac{(\log x)^n}{x}=0$であることを用いてもよい.
(2)$\displaystyle a_0=\int_1^e f_0(x) \, dx$とし,$\displaystyle a_n=\frac{1}{n!}\int_1^e f_n(x) \, dx$とする.自然数$n$に対して$a_{n-1}$と$a_n$の関係式を求めよ.
(3)(2)の関係式を用いて,極限$\displaystyle \lim_{n \to \infty}\sum_{k=1}^n \frac{(-1)^k}{k!}$を求めよ.
岩手大学 国立 岩手大学 2010年 第1問
次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{a}=(-1,\ 1),\ \overrightarrow{b}=(3,\ -2)$に対して,$\overrightarrow{a}+\overrightarrow{b}$と$\overrightarrow{a}+t\overrightarrow{b}$が垂直になるように,実数$t$の値を求めよ.
(2)$\displaystyle \lim_{x \to 3} \frac{\sqrt{x+k}-3}{x-3}$が有限な値になるように,定数$k$の値を定め,その極限値を求めよ.
(3)$1$個のサイコロを投げて,出る目の数を$a$とする.このとき,楕円$3x^2+y^2=12$と直線$x-y+a=0$の共有点の個数の期待値を求めよ.
信州大学 国立 信州大学 2010年 第5問
次の問いに答えよ.

(1)四面体OABCにおいて,OA$\perp$BCかつOB$\perp$CAならば,OC$\perp$ABとなることを証明せよ.
(2)不定積分$\displaystyle \int x^3 e^{x^2} \, dx$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \sum_{k=1}^n \frac{n}{4n^2-k^2}$を求めよ.
スポンサーリンク

「極限」とは・・・

 まだこのタグの説明は執筆されていません。