タグ「極限」の検索結果

20ページ目:全244問中191問~200問を表示)
首都大学東京 公立 首都大学東京 2012年 第2問
$n$を正の整数とし,$n^2+3$と$n+1$の最大公約数を$d_n$とおく.以下の問いに答えなさい.

(1)$d_1,\ d_2,\ d_3,\ d_4,\ d_5$を求めなさい.
(2)$(n^2+3)-(n-1)(n+1)=4$を用いて,$d_n$は$1,\ 2,\ 4$のいずれかであることを示しなさい.
(3)$\displaystyle \sum_{n=1}^{610} d_n$を求めなさい.
(4)次の極限値を求めなさい.
\[ \lim_{k \to \infty} \frac{1}{k} \sum_{n=1}^k d_n \]
広島市立大学 公立 広島市立大学 2012年 第1問
次の問いに答えよ.

(1)次の不定積分を求めよ.\\
$\displaystyle (\text{i}) \int \frac{\log x}{\sqrt[3]{x}} \, dx \qquad (\text{ii}) \int \sin^9 x \cos x \, dx \qquad (\text{iii}) \int \sin^9 x \cos^3 x \, dx$
(2)次の極限値を求めよ.$\displaystyle \lim_{x \to 0} \frac{1-\cos x}{x^2}$
(3)$\displaystyle \lim_{x \to \infty} \frac{\sin x}{x}=0$を示せ.
富山県立大学 公立 富山県立大学 2012年 第3問
$a$は定数で$a>1$とする.関数$\displaystyle f(x)=\frac{a}{1+(a-1)e^{-x}}$について,次の問いに答えよ.

(1)不等式$0<f(x)<a$が成り立つことを示せ.また,極限$\displaystyle \lim_{x \to -\infty}f(x)$および$\displaystyle \lim_{x \to \infty}f(x)$を求めよ.
(2)$a=3$のとき,$y=f(x)$のグラフの概形を,極値および変曲点を調べてかけ.
(3)$p$は定数で$p<0$とする.$a=3$のとき,定積分$\displaystyle I(p)=\int_p^0 f(x) \, dx$を求めよ.また,極限$\displaystyle \lim_{p \to -\infty}I(p)$を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
九州大学 国立 九州大学 2011年 第2問
$a$を正の定数とする.以下の問いに答えよ.

(1)関数$f(x)=(x^2+2x+2-a^2)e^{-x}$の極大値および極小値を求めよ.
(2)$x \geqq 3$のとき,不等式$x^3 e^{-x} \leqq 27e^{-3}$が成り立つことを示せ.さらに,極限値
\[ \lim_{x \to \infty} x^2 e^{-x} \]
を求めよ.
(3)$k$を定数とする.$y=x^2+2x+2$のグラフと$y=ke^x+a^2$のグラフが異なる$3$点で交わるための必要十分条件を,$a$と$k$を用いて表せ.
東京大学 国立 東京大学 2011年 第3問
$L$を正定数とする.座標平面の$x$軸上の正の部分にある点P$(t,\ 0)$に対し,原点Oを中心とし点Pを通る円周上を,Pから出発して反時計回りに道のり$L$だけ進んだ点をQ$(u(t),\ v(t))$と表す.

(1)$u(t),\ v(t)$を求めよ.
(2)$0<a<1$の範囲の実数$a$に対し,積分
\[ f(a) = \int_a^1 \sqrt{\{u^{\, \prime}(t)\}^2 + \{v^{\, \prime}(t)\}^2 } \, dt \]
を求めよ.
(3)極限$\displaystyle \lim_{a \to +0}\frac{f(a)}{\log a}$を求めよ.
大阪大学 国立 大阪大学 2011年 第5問
正数$r$に対して,$a_1=0,\ a_2=r$とおき,数列$\{a_n\}$を次の漸化式で定める.
\[ a_{n+1}=a_n+r_n(a_n-a_{n-1}) \quad (n=2,\ 3,\ 4,\ \cdots) \]
ただし$a_n$と$a_{n-1}$から漸化式を用いて$a_{n+1}$を決める際には硬貨を投げ,表がでたとき$\displaystyle r_n=\frac{r}{2}$,裏がでたとき$\displaystyle r_n=\frac{1}{2r}$とする.ここで表がでる確率と裏がでる確率は等しいとする.$a_n$の期待値を$p_n$とするとき,以下の問いに答えよ.

(1)$p_3$および$p_4$を,$r$を用いて表せ.
(2)$n \geqq 3$のときに$p_n$を,$n$と$r$を用いて表せ.
(3)数列$\{p_n\}$が収束するような正数$r$の範囲を求めよ.
(4)$r$が(3)で求めた範囲を動くとき,極限値$\displaystyle \lim_{n \to \infty}p_n$の最小値を求めよ.
弘前大学 国立 弘前大学 2011年 第3問
次の問いに答えよ.ただし,$e$は自然対数の底である.

(1)すべての実数$x$に対して,次の不等式を証明せよ.
\[ 1-x^2 \leqq e^{-x^2} \leqq 1 \]
(2)極限$\displaystyle \lim_{n \to \infty} \int_0^1 x^2e^{-(\frac{x}{n})^2} \; dx$を求めよ.
筑波大学 国立 筑波大学 2011年 第2問
自然数$n$に対し,関数
\[ F_n(x) = \int_x^{2x} e^{-t^n} \, dt \quad (x \geqq 0) \]
を考える.

(1)関数$F_n(x) \ (x \geqq 0)$はただ一つの点で最大値をとることを示し,$F_n(x)$が最大となるような$x$の値$a_n$を求めよ.
(2)(1)で求めた$a_n$に対し,極限値$\displaystyle \lim_{n \to \infty} \log a_n$を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2011年 第3問
自然数$n$に対し
\begin{eqnarray}
& & S_n=\int_0^1 \frac{1-(-x)^n}{1+x} \, dx \nonumber \\
& & T_n=\sum_{k=1}^n \frac{(-1)^{k-1}}{k(k+1)} \nonumber
\end{eqnarray}
とおく.このとき以下の各問いに答えよ.

(1)次の不等式を示せ.
\[ \left| S_n-\int_0^1 \frac{1}{1+x} \, dx \right| \leqq \frac{1}{n+1} \]
(2)$T_n-2S_n$を$n$を用いて表せ.
(3)極限値$\displaystyle \lim_{n \to \infty} T_n$を求めよ.
スポンサーリンク

「極限」とは・・・

 まだこのタグの説明は執筆されていません。