タグ「極大値」の検索結果

7ページ目:全138問中61問~70問を表示)
千葉工業大学 私立 千葉工業大学 2013年 第1問
次の各問に答えよ.

(1)$\mathrm{A}$地点から$15 \, \mathrm{km}$離れた$\mathrm{B}$地点まで行くのに,初めは時速$4 \, \mathrm{km}$で歩き,途中から時速$6 \, \mathrm{km}$で歩くことにする.$\mathrm{A}$地点を出発後,$3$時間以内に$\mathrm{B}$地点に到着するためには,時速$4 \, \mathrm{km}$で歩ける距離は最大で$[ア] \, \mathrm{km}$である.
(2)半径$2 \sqrt{6}$の円に内接する正三角形の$1$辺の長さは$[イ] \sqrt{[ウ]}$である.
(3)中心が$(-2,\ 3)$で,$y$軸に接する円の方程式は$x^2+y^2+[エ]x-[オ]y+[カ]=0$である.
(4)$3^n$の一の位の数字が$1$になる正の整数$n$の最小値は$[キ]$であり,$3^{102}$の一の位の数字は$[ク]$である.
(5)数直線上の集合$A=\{x \;|\; 2<x<9 \}$,$B=\{x \;|\; k<x<k+2 \}$(ただし,$k$は定数)において,$A \cap B$が空集合となるような$k$の値の範囲は$k \leqq [ケ]$または$[コ] \leqq k$である.
(6)白玉$3$個,赤玉$5$個の計$8$個の玉が入った箱の中から同時に$4$個の玉を取り出すとき,白玉も赤玉もともに取り出される確率は$\displaystyle \frac{[サシ]}{[スセ]}$である.
(7)方程式$\displaystyle 9^x=\frac{3}{27^x}$の解は$\displaystyle x=\frac{[ソ]}{[タ]}$である.
(8)関数$f(x)=-2x^3-6x^2+9$の極大値は$[チ]$,極小値は$[ツ]$である.
北海道医療大学 私立 北海道医療大学 2013年 第3問
$3$次関数$f(x)=x^3+2kx^2-kx+1$について,以下の問に答えよ.ただし,$k$は定数とする.

(1)関数$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)関数$f(x)$が極大値と極小値をもつときの$k$の値の範囲を求めよ.
(3)$k$が$(2)$で求めた範囲にあるとき,極値を与える$x$の値を$\alpha,\ \beta$とおく.このとき,$\alpha\beta$,$\alpha+\beta$,$\alpha^2+\beta^2$,$\alpha^3+\beta^3$の値を求めよ.ただし,$\alpha>\beta$とする.
(4)$k$が$(2)$で求めた範囲にあるとき,極大値と極小値の和を$k$を用いて表せ.
北里大学 私立 北里大学 2013年 第1問
$2$つの関数$f(x)=x^3-6x^2+9x+1$と$g(x)=|-x^2+6x-3|-2$がある.

(1)関数$f(x)$は,極大値$[ア]$,極小値$[イ]$をとる.
(2)関数$y=g(x)$のグラフと直線$x+y=k$が異なる$4$個の共有点をもつ.このとき,実数$k$のとり得る値の範囲は,$[ウ]<k<[エ]$である.
(3)方程式$f(x)=g(x)$の解のうち,最小のものは$x=[オ]$であり,最大のものは$x=[カ]$である.
同志社大学 私立 同志社大学 2013年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)行列$A=\left( \begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array} \right)$と$B=\left( \begin{array}{cc}
\cos \beta & \sin \beta \\
\sin \beta & -\cos \beta
\end{array} \right) (0<\beta<\alpha<2\pi)$の積$AB$の$(1,\ 1)$成分は$\theta=\alpha-\beta$を用いて表すと$[ ]$となり,$(1,\ 2)$成分は$\theta$を用いて表すと$[ ]$となる.ここで点$\mathrm{P}_1(\sqrt{2},\ \sqrt{2})$が$AB$で表される$1$次変換によって点$\displaystyle \mathrm{P}_2 \left( \frac{\sqrt{6}-\sqrt{2}}{2},\ \frac{\sqrt{6}+\sqrt{2}}{2} \right)$に移るとすると$\theta=[ ]$となる.このとき,${(AB)}^{25}$で表される$1$次変換によって点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となり,$((AB)^{-1})^{2013}$で点$\mathrm{P}_1$が移る点の$x$座標は$[ ]$となる.
(2)関数$f(x)=(ax^2+bx)e^{-x^2}$は$\displaystyle x=\frac{1}{2}$で極大値$1$をとるとする.このとき,$a=[ ]$,$b=[ ]$であり,$f(x)>0$を満たす範囲は$0<x<[ ]$となる.この区間で関数$g(x)=\log f(x)$を考える.曲線$C:y=g(x)$の点$\displaystyle \left( 1,\ -\frac{3}{4} \right)$における接線の方程式は$y=[ ]$となり,曲線$C$と直線$y=k$が共有点をもたない$k$の値の範囲は$[ ]$となる.
安田女子大学 私立 安田女子大学 2013年 第4問
関数$f(x)=x^3-3x^2+4$とする.$k$を実数とし,$y=f(x)$を$x$軸方向に$k$,$y$軸方向に$-4$だけ平行移動した曲線の方程式を$y=g(x)$とするとき,次の問いに答えよ.

(1)$g(x)$の極大値と極小値を求めよ.
(2)$y=f(x)$と$y=g(x)$が異なる$2$つの交点をもち,このうちどちらか一方の交点の$x$座標が$2$であるとき,$k$の値を求めよ.
(3)$k$が$(2)$で求めた値をとるとき,$y=f(x)$と$y=g(x)$で囲まれた図形の面積を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
実数$a,\ b,\ c$に対して,$f(x)=x^3+ax^2+bx+c$とする.関数$f(x)$は$f(\alpha)=f(\beta)=0 (\alpha \neq \beta)$を満たす.また,この関数は$x=\alpha$で極小値$0$をとり,$x=\gamma$で極大となる.このとき,
\[ \gamma=\frac{[コ] \alpha+[サ] \beta}{[シ]} \]
である.さらに,$\beta=4 \alpha$のとき,極大値と極小値の差が$32$であるとすると,
\[ a=[ス],\quad b=[セ],\quad c=[ソ] \]
である.
早稲田大学 私立 早稲田大学 2013年 第1問
関数$f(x)=x^3+ax^2+bx$が$x=\alpha$で極大値,$x=\beta$で極小値をとるとき,次の各問に答えよ.

(1)極大値と極小値がともに存在するための条件を,$a$と$b$を用いて表せ.
(2)$\alpha+\beta$を,$a$と$b$を用いて表せ.
(3)$f(\alpha)+f(\beta)$を,$a$と$b$を用いて表せ.
(4)$f(\alpha)+f(\beta)=0$が成り立つための条件を,$a$と$b$を用いて表せ.
早稲田大学 私立 早稲田大学 2013年 第3問
$2$つの曲線$y=x^3-x \cdots\cdots①$および$y={(x-a)}^3-(x-a) \cdots\cdots②$がある.ただし,$a>0$とする.次の問に答えよ.

(1)$②$が$x=x_1$で極大値,$x=x_2$で極小値をとり,$x=x_1,\ x_2$における曲線$②$上の点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,直線$\mathrm{AB}$の方程式を求めよ.
(2)曲線$①,\ ②$が異なる$2$点で交わるとき,$a$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$①,\ ②$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.$\beta-\alpha$を$a$を用いて表せ.
(4)$(2)$のとき,曲線$①,\ ②$で囲まれた部分の面積$S$を$a$を用いて表せ.
大阪大学 国立 大阪大学 2012年 第1問
$1$個のさいころを$3$回続けて投げるとき,$1$回目に出る目を$l$,$2$回目に出る目を$m$,$3$回目に出る目を$n$で表し,$3$次式
\[ f(x) = x^3+ l x^2 + mx+n \]
を考える.このとき,以下の問いに答えよ.

(1)$f(x)$が$(x+1)^2$で割り切れる確率を求めよ.
(2)関数$y=f(x)$が極大値も極小値もとる確率を求めよ.
弘前大学 国立 弘前大学 2012年 第2問
$f(x)=\{ x^2+(2-e)x+1 \} e^x$とする.ここで$e$は自然対数の底である.

(1)関数$f(x)$の極大値を求めよ.
(2)上で求めた極大値を$b$として,曲線$y=f(x)$と直線$y=b$で囲まれる部分の面積を求めよ.
スポンサーリンク

「極大値」とは・・・

 まだこのタグの説明は執筆されていません。