タグ「楕円」の検索結果

6ページ目:全83問中51問~60問を表示)
新潟大学 国立 新潟大学 2012年 第1問
平面上の点$\mathrm{P}(x,\ y)$を
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right) =\left( \begin{array}{cc}
1 & a \\
a & 2
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
によって定められる点$\mathrm{Q}(X,\ Y)$に移す移動を考える.ここで,$a$は実数とする.楕円$C:x^2+4y^2=1$が与えられているとき,次の問いに答えよ.

(1)点$\mathrm{P}(x,\ y)$が楕円$C$上を動くとき,点$\mathrm{Q}(X,\ Y)$は円$D:X^2+Y^2=1$上を動くとする.このとき$a$の値を求めよ.
(2)点$\mathrm{P}(x,\ y)$が楕円$C$上を動くとき,点$\mathrm{Q}(X,\ Y)$は直線$\ell:Y=pX+q$上を動くとする.ただし$p,\ q$は実数とする.このとき$a$および$p,\ q$の値を求めよ.
(3)(2)において,点$\mathrm{P}(x,\ y)$が楕円$C$上を動くとき,点$\mathrm{Q}(X,\ Y)$の$X$の最大値,最小値を求めよ.
香川大学 国立 香川大学 2012年 第2問
楕円$\displaystyle C_1:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$および双曲線$\displaystyle C_2:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$について,次の問に答えよ.ただし,$a>0,\ b>0$とする.

(1)楕円$C_1$上の点$(x_1,\ y_1)$における接線の方程式は
\[ \frac{x_1x}{a^2}+\frac{y_1y}{b^2}=1 \]
であることを示せ.
(2)楕円$C_1$の外部の点$(p,\ q)$を通る$C_1$の2本の接線の接点をそれぞれA$_1$,A$_2$とする.直線A$_1$A$_2$の方程式は
\[ \frac{px}{a^2}+\frac{qy}{b^2}=1 \]
であることを示せ.
(3)$(p,\ q)$が双曲線$C_2$上の点であるとき,直線$\displaystyle \frac{px}{a^2}+\frac{qy}{b^2}=1$は$C_2$に接することを示せ.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
明治大学 私立 明治大学 2012年 第4問
次の空欄$[ア]$から$[ク]$に当てはまるものをそれぞれ答えよ.

放物線$\displaystyle C_1:y=\frac{x^2}{8}+4$と楕円$\displaystyle C_2:x^2+\frac{y^2}{4}=2$を考える.

$C_1$上の点$(4a,\ 2a^2+4)$での接線の方程式は
\[ y= [ア]x-[イ] \]
である.$C_1$上の点$(4a,\ 2a^2+4)$における接線が同時に$C_2$の接線でもあるような$a$の値は全部で$4$個ある.それらを小さい方から順に$a_1,\ a_2,\ a_3,\ a_4$とすれば,$a_1=[ウ],\ a_2=[エ]$である.$C_2$の囲む図形の面積は$[オ]$である.点$(4a_1,\ 2{a_1}^2+4)$における$C_1$の接線を$y=f(x)$,点$(4a_4,\ 2{a_4}^2+4)$における$C_1$の接線を$y=g(x)$とする.このとき,$y=g(x)$と$C_2$の接点は$([カ],\ [キ])$である.$6$つの不等式

$\displaystyle y \geqq f(x),\quad y \geqq g(x),\quad x^2+\frac{y^2}{4} \geqq 2,\quad y \leqq \frac{x^2}{8}+4,$
$4a_1 \leqq x \leqq 4a_4,\quad [キ] \leqq y$

を同時にみたす領域の面積は$[ク]-3\pi$である.
金沢工業大学 私立 金沢工業大学 2012年 第1問
座標平面上において,原点$\mathrm{O}$と点$(6,\ 0)$からの距離の和が$10$である楕円を考える.

(1)この楕円の方程式は$\displaystyle \frac{(x-[ア])^2}{[イウ]}+\frac{y^2}{[エオ]}=1$である.

(2)この楕円と$x$軸,$y$軸との$4$個の交点を頂点とする四角形の面積は$[カキ]$である.
昭和大学 私立 昭和大学 2012年 第3問
次の各問に答えよ.

(1)正の数$a,\ b$が$a^3+b^3=5$を満たすとき,$a+b$のとりうる値の範囲を求めよ.
(2)$x>0,\ x \neq 1$のとき,$\displaystyle 1+\frac{1}{\log_2x}-\frac{3}{\log_3x}<0$を満たす$x$の範囲を求めよ.
(3)点$\mathrm{P}$が楕円$x^2+5(y-1)^2=5$上を動くとき,原点$\mathrm{O}$と点$\mathrm{P}$を結ぶ線分の長さの最大値を求めよ.
(4)$A=\left( \begin{array}{cc}
3 & -5 \\
2 & -3
\end{array} \right),\ I=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.$(I+A)^{2012}=mI+nA$となる実数$m,\ n$の値を求めよ.
関西大学 私立 関西大学 2012年 第2問
$a$を実数の定数とし,曲線$x^2+4y^2-2x-3=0$を$C_1$とし,円$(x-a)^2+y^2=4$を$C_2$とする.次の$[ ]$をうめよ.

(1)曲線$C_1$は楕円$\displaystyle \frac{x^2}{[$①$]}+\frac{y^2}{[$②$]}=1$を$x$軸方向に$[$③$]$だけ平行移動した楕円を表す.
(2)曲線$C_1$と円$C_2$が共有点をもつような$a$の値の範囲は$[$④$]$である.
(3)$a=0$のとき,$C_1$と$C_2$の共有点は$2$点あり,そのうち$y$座標が正である点を$\mathrm{P}$とする.点$\mathrm{P}$の$x$座標の値は$\displaystyle \frac{-1+2 \sqrt{[$⑤$]}}{3}$である.また,点$\mathrm{P}$における$C_1$の接線が$x$軸と交わる点の$x$座標の値は$3+\sqrt{[$⑥$]}$であり,点$\mathrm{P}$における$C_2$の接線が$x$軸と交わる点の$x$座標の値は$\displaystyle \frac{8 \sqrt{10}+[$④chi$]}{13}$である.
中央大学 私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.

\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群

\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$

\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$

エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
首都大学東京 公立 首都大学東京 2012年 第1問
楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>0,\ b>0)$上の点P$(x_0,\ y_0) (0 < x_0 < a,\ y_0>0)$における接線と$x$軸,$y$軸との交点をそれぞれA,Bとする.以下の問いに答えなさい.

(1)$\displaystyle \frac{\ x_0^2 \ }{a^2}=t$とおくとき,線分ABの長さ$\overline{AB}$を$a,\ b,\ t$を用いて表しなさい.
(2)$0<x_0<a$における$\overline{AB}$の最小値を求めなさい.また,そのときのPの座標を求めなさい.
筑波大学 国立 筑波大学 2011年 第6問
$d$を正の定数とする.2点A$(-d,\ 0)$,B$(d,\ 0)$からの距離の和が$4d$である点Pの軌跡として定まる楕円$E$を考える.点A,点B,原点Oから楕円$E$上の点Pまでの距離をそれぞれAP,BP,OPと書く.このとき,以下の問いに答えよ.

(1)楕円$E$の長軸と短軸の長さを求めよ.
(2)$\text{AP}^2+\text{BP}^2$および$\text{AP} \cdot \text{BP}$を,OPと$d$を用いて表せ.
(3)点Pが楕円$E$全体を動くとき,$\text{AP}^3+\text{BP}^3$の最大値と最小値を$d$を用いて表せ.
スポンサーリンク

「楕円」とは・・・

 まだこのタグの説明は執筆されていません。