タグ「楕円」の検索結果

5ページ目:全83問中41問~50問を表示)
奈良県立医科大学 公立 奈良県立医科大学 2014年 第11問
点$\mathrm{P}$が楕円$x^2+4y^2=4$の上を動くとき,$\mathrm{P}$から定点$\displaystyle \mathrm{A}(a,\ 0) \left( 0<a<\frac{3}{2} \right)$への距離$L(p)$の最小値を求めよ.
東京工業大学 国立 東京工業大学 2013年 第5問
$a,\ b$を正の実数とし,円$C_1:(x-a)^2+y^2=a^2$と楕円$\displaystyle C_2:x^2+\frac{y^2}{b^2}=1$を考える.

(1)$C_1$が$C_2$に内接するための$a,\ b$の条件を求めよ.
(2)$\displaystyle b=\frac{1}{\sqrt{3}}$とし,$C_1$が$C_2$に内接しているとする.このとき,第1象限における$C_1$と$C_2$の接点の座標$(p,\ q)$を求めよ.
(3)(2)の条件のもとで,$x \geqq p$の範囲において,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
福岡教育大学 国立 福岡教育大学 2013年 第3問
点$\mathrm{A}(a,\ 0)$と楕円$\displaystyle C:\frac{x^2}{3}+y^2=1$を考える.点$\mathrm{A}$と楕円$C$上の点$\mathrm{P}(u,\ v)$との距離を$d$とする.ただし,$a$は正の定数とする.次の問いに答えよ.

(1)$d$を$u$の式で表せ.
(2)$d$の最小値を求めよ.また,そのときの$u$の値を求めよ.
筑波大学 国立 筑波大学 2013年 第6問
楕円$\displaystyle C:\frac{x^2}{16}+\frac{y^2}{9}=1$の,直線$y=mx$と平行な$2$接線を$\ell_1$,$\ell_1^\prime$とし,$\ell_1$,$\ell_1^\prime$に直交する$C$の$2$接線を$\ell_2$,$\ell_2^\prime$とする.

(1)$\ell_1$,$\ell_1^\prime$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_1^\prime$の距離$d_1$および$\ell_2$と$\ell_2^\prime$の距離$d_2$をそれぞれ$m$を用いて表せ.ただし,平行な$2$直線$\ell$,$\ell^\prime$の距離とは,$\ell$上の$1$点と直線$\ell^\prime$の距離である.
(3)$(d_1)^2+(d_2)^2$は$m$によらず一定であることを示せ.
(4)$\ell_1$,$\ell_1^\prime$,$\ell_2$,$\ell_2^\prime$で囲まれる長方形の面積$S$を$d_1$を用いて表せ.さらに$m$が変化するとき,$S$の最大値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第4問
直線$x+y=1$に接する楕円
\[ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \quad (a>0,\ b>0) \]
を$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.

$\displaystyle a^2=\frac{[ヌ]}{[ニ]},\ b^2=\frac{[ネ]}{[ニ]}$のとき,$V$は最大値$\displaystyle \frac{[ハ] \sqrt{3} \pi}{[ノ]}$をとる.
東京医科大学 私立 東京医科大学 2013年 第3問
座標平面上の楕円$\displaystyle C:\frac{(x-a)^2}{b}+\frac{(y-c)^2}{2}=1$($a,\ b,\ c$は正の定数)は$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 2)$を通るとする.

(1)定数$a,\ b,\ c$は$a=[ア]$,$b=[イ]$,$c=[ウ]$である.
(2)点$\mathrm{P}$が楕円$C$上を動くとき,内積$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AP}}$の最大値を$M$とすれば$\displaystyle M=\frac{[エオ]}{[カ]}$である.
奈良県立医科大学 公立 奈良県立医科大学 2013年 第4問
楕円$\displaystyle \frac{x^2}{4}+y^2=1$の第$1$象限の点$\mathrm{P}$に接線を引き,$x$軸との交点を$\mathrm{A}$,$y$軸との交点を$\mathrm{B}$とする.$\mathrm{P}$を第$1$象限で楕円上を動かしたときの線分$\mathrm{AB}$の長さの最小値を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$T$は原点の回りの回転移動と原点中心の拡大(相似変換)との合成変換であることを示せ.
(2)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の2倍となる$c$の値を求めよ.
(3)$c=2$とする.楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.$E$が$E^\prime$の内部にあることを示し,$E^\prime$の内部にあり$E$の外部にある部分の面積を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の$k$倍($k \geqq 1$)となる$c$の値を求めよ.
(2)楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.楕円$E^\prime$上のすべての点が楕円$E$の周上または外部にあるための,$c$の条件を求めよ.
弘前大学 国立 弘前大学 2012年 第6問
$xy$平面上の楕円$4x^2+9y^2=36$を$C$とする.

(1)直線$y=ax+b$が楕円$C$に接するための条件を$a$と$b$の式で表せ.
(2)楕円$C$の外部の点$\mathrm{P}$から$C$に引いた$2$本の接線が直交するような点$\mathrm{P}$の軌跡を求めよ.
スポンサーリンク

「楕円」とは・・・

 まだこのタグの説明は執筆されていません。