タグ「楕円」の検索結果

2ページ目:全83問中11問~20問を表示)
大阪府立大学 公立 大阪府立大学 2016年 第3問
楕円$\displaystyle C_1:\frac{x^2}{9}+\frac{y^2}{5}=1$の焦点を$\mathrm{F}$,$\mathrm{F}^\prime$とする.ただし,$\mathrm{F}$の$x$座標は正である.正の実数$m$に対し,$2$直線$y=mx$,$y=-mx$を漸近線にもち,$2$点$\mathrm{F}$,$\mathrm{F}^\prime$を焦点とする双曲線を$C_2$とする.第$1$象限にある$C_1$と$C_2$の交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)$C_2$の方程式を$m$を用いて表せ.
(2)線分$\mathrm{FP}$および線分$\mathrm{F}^\prime \mathrm{P}$の長さを$m$を用いて表せ.
(3)$\angle \mathrm{F}^\prime \mathrm{PF}={60}^\circ$となる$m$の値を求めよ.
弘前大学 国立 弘前大学 2015年 第2問
次の問いに答えよ.

(1)$r>0$を定数とする.点$(x,\ y)$が楕円$4x^2+y^2=r^2$上を動くとき,$6x+4y$のとり得る値の範囲を求めよ.
(2)$x,\ y$がすべての実数値をとるとき,$\displaystyle \frac{6x+4y+5}{4x^2+y^2+15}$の最大値と最小値を求めよ.
愛媛大学 国立 愛媛大学 2015年 第1問
次の問いに答えよ.

(1)不定積分$\displaystyle \int x^3e^{x^2} \, dx$を求めよ.
(2)定積分$\displaystyle \int_{\frac{1}{e}}^e |\log x| \, dx$を求めよ.
(3)楕円$\displaystyle \frac{x^2}{4}+\frac{y^2}{2}=1$上の点$(\sqrt{2},\ 1)$における接線の方程式を求めよ.
(4)$\displaystyle \left( \frac{1+\sqrt{5}}{2} \right)^3$からその整数部分を引いた値を$a$とするとき,$a^4+5a^3+4a^2+4a$の値を求めよ.
(5)実数$a,\ b,\ c$は$0<a<b<c$,$\displaystyle \frac{1}{b}=\frac{1}{2} \left( \frac{1}{a}+\frac{1}{c} \right)$をみたすとする.このとき,$|b-a|<|b-c|$が成り立つことを示せ.
群馬大学 国立 群馬大学 2015年 第4問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
神戸大学 国立 神戸大学 2015年 第2問
座標平面上の楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$C$とする.$a>2$,$0<\theta<\pi$とし,$x$軸上の点$\mathrm{A}(a,\ 0)$と楕円$C$上の点$\mathrm{P}(2 \cos \theta,\ \sin \theta)$をとる.原点を$\mathrm{O}$とし,直線$\mathrm{AP}$と$y$軸との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$を通り$x$軸に平行な直線と,直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.以下の問に答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{R}$の$y$座標を$f(\theta)$とする.このとき,$0<\theta<\pi$における$f(\theta)$の最大値を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{R}$の距離の$2$乗を$g(\theta)$とする.このとき,$0<\theta<\pi$における$g(\theta)$の最小値を求めよ.
群馬大学 国立 群馬大学 2015年 第3問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
福井大学 国立 福井大学 2015年 第4問
座標平面上に,$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$と,原点を中心とする半径$2$の円周上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$をとるとき,以下の問いに答えよ.

(1)$\mathrm{P}$を通って,直線$\mathrm{AP}$に直交する直線$\ell$の方程式を求めよ.
(2)$\ell$に関して$\mathrm{A}$と対称な点を$\mathrm{C}$とし,$\ell$と直線$\mathrm{BC}$の交点を$\mathrm{Q}$とおく.線分$\mathrm{BQ}$の長さを$\theta$を用いて表せ.
(3)$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの点$\mathrm{Q}$の軌跡は楕円であることを示し,その長軸と短軸の長さの比を求めよ.
和歌山大学 国立 和歌山大学 2015年 第5問
点$\mathrm{P}(3,\ 2)$から楕円$\displaystyle C:\frac{x^2}{3}+\frac{y^2}{4}=1$に$2$本の接線$\ell_1,\ \ell_2$を引き,それぞれの接点の座標を$(a,\ b)$,$(c,\ d)$とする.ただし,$a<c$とする.次の問いに答えよ.

(1)接点の座標$(a,\ b)$,$(c,\ d)$を求めよ.
(2)$C$の$x \geqq 0$の部分を曲線$C_0$とするとき,$C_0$と$\ell_1$および$\ell_2$で囲まれた部分の面積$S$を求めよ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
スポンサーリンク

「楕円」とは・・・

 まだこのタグの説明は執筆されていません。