タグ「桁数」の検索結果

16ページ目:全195問中151問~160問を表示)
大同大学 私立 大同大学 2012年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)$x=\sqrt{14}-\sqrt{7}+\sqrt{2}$,$y=\sqrt{14}+\sqrt{7}-\sqrt{2}$のとき,
$(x+y)^3=[][][] \sqrt{14}$,$xy=[ ]+[ ] \sqrt{14}$,$x^3+y^3=[][] \sqrt{14}-[][][]$である.
(2)$a$を実数とする.$2$次方程式$x^2+5ax+3a+4=0$が正の解$\alpha$と負の解$\beta$をもつとき,$a$の範囲は$\displaystyle a<-\frac{[ ]}{[ ]}$であり,$\alpha-\beta$のとる値の範囲は$\displaystyle \alpha-\beta>\frac{[][]}{[ ]}$である.
(3)$\triangle \mathrm{ABC}$において$\mathrm{AB}=7$,$\mathrm{BC}=9$,$\mathrm{AC}=8$とするとき,$\displaystyle \cos A=\frac{[ ]}{[ ]}$である.辺$\mathrm{BC}$上の点を中心とする半径$r$の円が$2$辺$\mathrm{AB}$,$\mathrm{AC}$に接するとき,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[][]}{[ ]} r$であり,$\displaystyle r=\frac{[ ] \sqrt{[ ]}}{[ ]}$である.
(4)$6$個の数字$0,\ 1,\ 2,\ 3,\ 4,\ 5$から異なる$4$個を並べてできる$4$桁の整数は$[][][]$個ある.このうち$2013$より小さい整数は$[][]$個あり,$2013$より大きく$4532$より小さい整数は$[][][]$個ある.
大同大学 私立 大同大学 2012年 第6問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)$6$個の数字$0,\ 1,\ 2,\ 3,\ 4,\ 5$から異なる$4$個を並べてできる$4$桁の整数は$[][][]$個ある.このうち$2013$より小さい整数は$[][]$個あり,$2013$より大きく$4532$より小さい整数は$[][][]$個ある.
(2)$a,\ b$は実数とする.
$a=[ ]$は,$(a-1)^2+(a-2)^2(b-3)^2=0$であるための必要条件である.
$a=[ ]$かつ$b=[ ]$であることは,$(a-1)^2+(a-2)^2(b-3)^2=0$であるための必要十分条件である.
$a=[ ]$または$b=[ ]$であることは,
\[ (a-1)^2(a-2)^2(b-3)^2(b-5)^2+(a-2)^2(a-4)^2(b-3)^2(b-7)^2=0 \]
であるための十分条件である.
(3)$a=[ ]$かつ$b=[ ]$であることは,
\[ (a-4)^2(b-5)^2(b-8)^2+(a-4)^2(a-6)^2+(a-5)^2(a-7)^2(b-7)^2=0 \]
であるための必要十分条件である.
北九州市立大学 公立 北九州市立大学 2012年 第2問
以下の問いの空欄$[サ]$~$[ナ]$に適する数値,式を記せ.

(1)$2$次方程式$2x^2-5x+4=0$の$2$つの解を$\alpha,\ \beta$とするとき,
\[ \alpha^2+\beta^2=[サ],\quad \frac{1}{\alpha}+\frac{1}{\beta}=[シ],\quad \alpha^3+\beta^3=[ス] \]
である.
(2)点$\mathrm{P}$が円$x^2+y^2=4$の周上を動くとき,点$\mathrm{A}(8,\ 0)$と点$\mathrm{P}$を結ぶ線分$\mathrm{AP}$を$\mathrm{AQ}:\mathrm{QP}=2:3$に内分する点$\mathrm{Q}$の軌跡は中心$[セ]$,半径$[ソ]$の円である.
(3)$0 \leqq \theta<2\pi$とする.方程式$\sqrt{3} \sin \theta+\cos \theta+1=0$を解くと$\theta=[タ],\ [チ]$である.
(4)$4^{45}$は$[ツ]$桁の数である.また,$\displaystyle \left( \frac{1}{8} \right)^{17}$は,小数第$[テ]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$とする.
(5)$a_1=1$,$a_{n+1}=a_n+n (n=1,\ 2,\ 3,\ \cdots)$で定義される数列$\{a_n\}$の一般項は,$a_n=[ト]$である.また,数列$\{a_n\}$の初項から第$n$項までの和は,$S_n=[ナ]$である.
京都大学 国立 京都大学 2011年 第5問
$0$以上の整数を$10$進法で表すとき,次の問いに答えよ.ただし,$0$は$0$桁の数と考えることにする.また$n$は正の整数とする.

(1)各桁の数が$1$または$2$である$n$桁の整数を考える.それらすべての整数の総和を$T_n$とする.$T_n$を$n$を用いて表せ.
(2)各桁の数が$0,\ 1,\ 2$のいずれかである$n$桁以下の整数を考える.それらすべての総和$S_n$をとする.$S_n$が$T_n$の$15$倍以上になるのは,$n$がいくつ以上のときか.必要があれは,$0.301 < \log_{10}2< 0.302$および$0.477<\log_{10}3<0.478$を用いてもよい.
静岡大学 国立 静岡大学 2011年 第1問
数列$\{ a_n \}$を$a_1 = 2,\ a_{n+1}=a_n 2^{6n^2} \ (n = 1,\ 2,\ 3,\ \cdots)$で定める.次の問いに答えよ.

(1)$b_n = \log_2 a_n$とし,$\{b_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$a_{10}$の桁数を求めよ.ただし$\log_{10}2 = 0.3010$とする.
静岡大学 国立 静岡大学 2011年 第1問
数列$\{ a_n \}$を$a_1 = 2,\ a_{n+1}=a_n 2^{6n^2} \ (n = 1,\ 2,\ 3,\ \cdots)$で定める.次の問いに答えよ.

(1)$b_n = \log_2 a_n$とし,$\{b_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)$a_{10}$の桁数を求めよ.ただし$\log_{10}2 = 0.3010$とする.
岩手大学 国立 岩手大学 2011年 第2問
以下の問いに答えよ.

(1)自然数$n$に関する次の命題を証明せよ.

(i) $n$を$3$で割った余りが1ならば,$n^2$を$3$で割った余りは$1$である.
(ii) $n$が$3$の倍数であることは,$n^2$が$3$の倍数であるための必要十分条件である.

(2)$100$から$999$までの$3$桁の自然数について,次の問いに答えよ.

(i) $3$種類の数字が現れるものは何個あるか.
\mon[$(ⅱ)$)] $0$が現れないものは何個あるか.
(iii) $0$または$1$が現れるものは何個あるか.

(3)$1$から$49$までの自然数からなる集合を全体集合$U$とする.$U$の要素のうち,$50$との最大公約数が$1$より大きいもの全体からなる集合を$V$,また,$U$の要素のうち,偶数であるもの全体からなる集合を$W$とする.いま$A$と$B$は$U$の部分集合で,次の$2$つの条件を満たすものとする.

\mon[(ア)] $A \cup \overline{B}=V$
\mon[(イ)] $\overline{A} \cap \overline{B} = W$

このとき,集合$A$の要素をすべて求めよ.ただし,$\overline{A}$と$\overline{B}$はそれぞれ$A$と$B$の補集合とする.
徳島大学 国立 徳島大学 2011年 第2問
数字$1,\ 2,\ 3$を使ってできる次のような整数の個数を求めよ.ただし,同じ数字を重複して使ってよいものとする.

(1)5桁の整数
(2)5桁の整数で2の倍数
(3)5桁の整数で3の倍数
(4)5桁の整数で4の倍数
(5)5桁の整数で6の倍数
徳島大学 国立 徳島大学 2011年 第1問
数字$1,\ 2,\ 3$を使ってできる次のような整数の個数を求めよ.ただし,同じ数字を重複して使ってよいものとする.

(1)$5$桁の整数
(2)$5$桁の整数で$2$の倍数
(3)$5$桁の整数で$3$の倍数
(4)$5$桁の整数で$4$の倍数
(5)$5$桁の整数で$6$の倍数
佐賀大学 国立 佐賀大学 2011年 第1問
次の問いに答えよ.

(1)中心が点$(1,\ 2)$,半径が3の円がある.点$\mathrm{P}$がこの円上を動くとき,点$\mathrm{A}(-3,\ 6)$と点$\mathrm{P}$を結ぶ線分$\mathrm{AP}$を$2:1$に内分する点$\mathrm{Q}$の軌跡を求めよ.
(2)5個の数字1,2,3,4,5から異なる3個を取って3桁の自然数を作る.3の倍数にも5の倍数にもならないものはいくつあるか.
スポンサーリンク

「桁数」とは・・・

 まだこのタグの説明は執筆されていません。