タグ「格子点」の検索結果

1ページ目:全36問中1問~10問を表示)
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(0,\ 11)$,$\mathrm{P}(m,\ 0)$,$\mathrm{Q}(0,\ n)$をとる.ただし,$m$と$n$は$1 \leqq m \leqq 5$,$1 \leqq n \leqq 11$を満たす整数とする.

(1)三角形$\mathrm{OAB}$の内部に含まれる格子点の個数を求めよ.ただし,格子点とは$x$座標と$y$座標がともに整数である点のことであり,内部には辺上の点は含まれない.
(2)三角形$\mathrm{OPQ}$の内部に含まれる格子点の個数が三角形$\mathrm{OAB}$の内部に含まれる格子点の個数の半分になるような組$(m,\ n)$をすべて求めよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(0,\ 11)$,$\mathrm{P}(m,\ 0)$,$\mathrm{Q}(0,\ n)$をとる.ただし,$m$と$n$は$1 \leqq m \leqq 5$,$1 \leqq n \leqq 11$を満たす整数とする.

(1)三角形$\mathrm{OAB}$の内部に含まれる格子点の個数を求めよ.ただし,格子点とは$x$座標と$y$座標がともに整数である点のことであり,内部には辺上の点は含まれない.
(2)三角形$\mathrm{OPQ}$の内部に含まれる格子点の個数が三角形$\mathrm{OAB}$の内部に含まれる格子点の個数の半分になるような組$(m,\ n)$をすべて求めよ.
大分大学 国立 大分大学 2016年 第2問
自然数$n$に対して関数$y=2nx-x^2$のグラフと$x$軸で囲まれた領域(境界線を含む)$R_n$を考える.以下の問いに答えなさい.

(1)領域$R_n$に含まれる格子点($x$座標と$y$座標がともに整数である点)の数$S_n$を求めなさい.
(2)点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2n,\ 0)$,および関数$y$の頂点を結ぶ線分で囲まれた領域(境界線を含む)に含まれる格子点の数$T_n$を求めなさい.
(3)$\displaystyle \lim_{n \to \infty} \frac{T_n}{S_n}$を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
\begin{mawarikomi}{36mm}{
\begin{zahyou*}[ul=1mm](-5,30)(0,35)
\def\C{(0,0)}%
\Drawline{(0,0)(30,0)}%
\Drawline{(0,10)(30,10)}%
\Drawline{(0,20)(30,20)}%
\Drawline{(0,30)(30,30)}%
\Drawline{(0,0)(0,30)}%
\Drawline{(10,0)(10,30)}%
\Drawline{(20,0)(20,30)}%
\Drawline{(30,0)(30,30)}%
\tenretu*{A(10,-13.75);B(10,13.75);C(-17,0)}%
\tenretu*{A(10,13.75);B(17,0);C(-17,0)}%
\emathPut{(0,35)}{例:$4 \times 4$の場合}
\Kuromaru[8pt]{(10,0)}
\Kuromaru[8pt]{(0,20)}
\Kuromaru[8pt]{(20,20)}
\Kuromaru[8pt]{(20,30)}
\tenretu*{A(-17,0);B(17,0)}%
\end{zahyou*}
}
座標平面の格子点$\{(i,\ j) \;|\; 1 \leqq i \leqq n,\ 1 \leqq j \leqq n \}$に$n$個の碁石を置く.ここで,$n$は正の整数とする.ただし,これらの碁石は同じ種類であり,互いに区別できない.また,格子点には高々$1$つの碁石しか置けないものとする.各$i$に対して,$\{(i,\ j) \;|\; 1 \leqq j \leqq n \}$を第$i$列,各$j$に対して$\{(i,\ j) \;|\; 1 \leqq i \leqq n \}$を第$j$行と呼ぶ.
\end{mawarikomi}

(1)$n$個の碁石を置くすべての場合の配置の総数を$A_n$とすると
\[ A_1=1, A_2=6, A_3=[$1$][$2$], A_4=\kakkofour{$3$}{$4$}{$5$}{$6$}, \cdots \]
である.
(2)$n$個の碁石を置くとき,どの行およびどの列にも$1$個の碁石を置く場合の配置の総数を$B_n$とすると
\[ B_1=1, B_2=2, B_3=[$7$][$8$], B_4=\kakkofour{$9$}{$10$}{$11$}{$12$}, \cdots \]
である.
(3)$n$個の碁石を置くとき,どの行およびどの列にも高々$2$個の碁石を置く場合の配置の総数を$C_n$とすると
\[ C_1=1, C_2=6, C_3=[$13$][$14$], C_4=\kakkofour{$15$}{$16$}{$17$}{$18$}, \cdots \]
である.
長崎大学 国立 長崎大学 2015年 第4問
実数$x \neq 1$について定義される関数
\[ f(x)=\frac{1+x}{1-x} \]
を考える.以下の問いに答えよ.

(1)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.
(2)$\displaystyle \lim_{x \to -\infty} f(x)$,$\displaystyle \lim_{x \to 1-0} f(x)$,$\displaystyle \lim_{x \to 1+0} f(x)$,$\displaystyle \lim_{x \to \infty} f(x)$を求めよ.
(3)$x$座標と$y$座標がともに整数である点を格子点という.曲線$y=f(x)$上の格子点の座標をすべて求めよ.
(4)関数$y=f(x)$のグラフをかけ.
(5)$x \leqq 0$かつ$y \geqq 0$で表される領域において,$x$軸と$y$軸および曲線$y=f(x)$で囲まれた図形の面積を求めよ.
金沢大学 国立 金沢大学 2015年 第3問
座標平面上で,$x$座標と$y$座標がともに$0$以上の整数である点を,ここでは格子点とよぶ.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へ,両端点がともに格子点であり長さが$1$の線分を用いて,格子点$(0,\ 0)$から順に最も少ない本数でつなぐ方法を数える.例えば,格子点$(0,\ 0)$から格子点$(3,\ 1)$へつなぐ方法の数は$4$である.次の問いに答えよ.

(1)格子点$(0,\ 0)$から格子点$(4,\ 0)$へつなぐ方法の数と,格子点$(0,\ 0)$から格子点$(2,\ 2)$へつなぐ方法の数を,それぞれ求めよ.
(2)条件$k+\ell=5$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を求めよ.
(3)条件$k+\ell=n (n \geqq 1)$を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
(4)条件$k+\ell=n$($k$と$\ell$はともに偶数で,$n \geqq 2$)を満たす格子点$(k,\ \ell)$を考える.格子点$(0,\ 0)$から格子点$(k,\ \ell)$へつなぐ方法の数を,この条件を満たすすべての格子点について足し合わせた数を$n$を用いて表せ.
埼玉大学 国立 埼玉大学 2015年 第2問
$xy$平面上の点$\mathrm{P}$の$x$座標および$y$座標がともに整数であるとき,$\mathrm{P}$を格子点とよぶ.また,自然数$n$に対して,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq n \\
0 \leqq y \leqq n
\end{array} \right. \]
の表す領域を$R$とする.$R$内の$4$つの格子点を頂点とする正方形の個数を$q_n$とする.次の問いに答えよ.

(1)$xy$平面上の$2$点$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b) (a>0,\ b>0)$を結ぶ線分を$1$辺とする正方形$\mathrm{ABCD}$を考える.点$\mathrm{C}$,$\mathrm{D}$が第$1$象限に含まれるとき,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
(2)$k$は自然数とする.$4$点$(0,\ 0)$,$(k,\ 0)$,$(k,\ k)$,$(0,\ k)$を頂点とする正方形を$E$とする.$E$の辺上の格子点($E$の頂点を含む)を$4$つの頂点とする正方形の個数を求めよ.
(3)$q_1,\ q_2,\ q_3$を求めよ.
(4)$q_n$を求めよ.
埼玉大学 国立 埼玉大学 2015年 第2問
$xy$平面上の点$\mathrm{P}$の$x$座標および$y$座標がともに整数であるとき,$\mathrm{P}$を格子点とよぶ.また,自然数$n$に対して,連立不等式
\[ \left\{ \begin{array}{l}
0 \leqq x \leqq n \\
0 \leqq y \leqq n
\end{array} \right. \]
の表す領域を$R$とする.$R$内の$4$つの格子点を頂点とする正方形の個数を$q_n$とする.次の問いに答えよ.

(1)$xy$平面上の$2$点$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b) (a>0,\ b>0)$を結ぶ線分を$1$辺とする正方形$\mathrm{ABCD}$を考える.点$\mathrm{C}$,$\mathrm{D}$が第$1$象限に含まれるとき,$\mathrm{C}$,$\mathrm{D}$の座標を求めよ.
(2)$k$は自然数とする.$4$点$(0,\ 0)$,$(k,\ 0)$,$(k,\ k)$,$(0,\ k)$を頂点とする正方形を$E$とする.$E$の辺上の格子点($E$の頂点を含む)を$4$つの頂点とする正方形の個数を求めよ.
(3)$q_1,\ q_2,\ q_3$を求めよ.
(4)$q_n$を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第1問
直線$L$を$2x+y=4n$とする.ただし,$n$は自然数とする.原点を$\mathrm{O}$とし,直線$L$と$x$軸との交点を$\mathrm{A}$,直線$L$と$y$軸との交点を$\mathrm{B}$とした三角形$\mathrm{OAB}$を考える.以下の問いに答えよ.

(1)交点$\mathrm{A}$および交点$\mathrm{B}$の座標をそれぞれ求めよ.
(2)直線$M$を$x=k$(ただし$k=0,\ 1,\ \cdots,\ 2n$)とするとき,直線$L$と直線$M$の交点$\mathrm{P}$の座標を求めよ.
(3)$(2)$の直線$M$上の格子点($x$座標および$y$座標がともに整数である点)のうち,三角形$\mathrm{OAB}$の周上および内部にある格子点の総数$T_k$を求めよ.
(4)三角形$\mathrm{OAB}$の周上にある格子点および内部にある格子点の総数$T_n$を求めよ.
(5)三角形$\mathrm{OAB}$の面積$S_n$を求めよ.また,$(4)$で得られた格子点の総数$T_n$と面積$S_n$の比に関する次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{T_n}{S_n} \]
上智大学 私立 上智大学 2015年 第3問
$a$を実数とするとき,座標平面において,円$C:x^2+y^2=20$および円$C_a:x^2+y^2+a(x+3y-10)=20$を考える.

(1)どのような$a$の値に対しても,$C_a$は$2$点$\mathrm{P} \left( [モ],\ [ヤ] \right)$,$\mathrm{Q} \left( [ユ],\ [ヨ] \right)$を必ず通る.ただし,$[モ]<[ユ]$とする.

(2)$C_a$の中心の座標は$\displaystyle \left( \frac{[ラ]}{[リ]}a,\ \frac{[ル]}{[レ]}a \right)$であり,$C_a$の半径を$r$とすると,$\displaystyle r^2=\frac{[ロ]}{[ワ]}(a^2+[ヲ]a+[ン])$である.

(3)$C_a$の半径$r$が最小となるのは,$a=[あ]$のときである.
(4)$C$の周および内部の領域を$D$,$C_a$の周および内部の領域を$D_a$とする.$a=[あ]$のとき$D$と$D_a$の共通部分の面積は$[い]\pi+[う]$である.
(5)$x$座標と$y$座標がともに整数の点を格子点とよぶ.$D$と$D_a$の共通部分に含まれる格子点の数を$n(a)$で表す.

(i) $a=-4$のとき,$n(a)=[え]$である.
(ii) $n(a)$が最小値$[お]$をとるための必要十分条件は,$a<[か]$である.
(iii) $12 \leqq n(a)<14$となる必要十分条件は,$[き] \leqq a<[く]$である.
スポンサーリンク

「格子点」とは・・・

 まだこのタグの説明は執筆されていません。