タグ「根号」の検索結果

97ページ目:全1904問中961問~970問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2013年 第3問
数列$\{a_n\}$を次のように定める.
\[ a_1=a_2=a_3=1,\quad a_{n+3}=a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_{n+1} \leqq a_{n+2} \leqq 2a_n$を示せ.
(2)$a_n \leqq \sqrt{2^n}$を示せ.
さらに,数列$\{b_n\}$を
\[ b_n=\left\{ \begin{array}{ll}
0 & a_n \ \text{が偶数のとき} \\
1 & a_n \ \text{が奇数のとき}
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.また,自然数$k$に対して,条件
\[ p_k \ \text{:すべての自然数} \ n \ \text{について} \ b_{n+k}=b_n \ \text{が成り立つ} \]
を考える.以下の問いに答えよ.
(3)条件$p_k$を満たす最小の自然数$k$を求めよ.
(4)$p,\ q,\ r$を整数とし,数列$\{a_n\}$の$a_1,\ a_2,\ a_3$を$a_1=p,\ a_2=q,\ a_3=r$に置き換え,数列$\{b_n\}$もそれにあわせて置き換える.$p,\ q,\ r$をどのように選んでも,条件$p_k$を満たす自然数$k$が存在することを示せ.
山形大学 国立 山形大学 2013年 第2問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
山形大学 国立 山形大学 2013年 第1問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
東京農工大学 国立 東京農工大学 2013年 第3問
次の問いに答えよ.

(1)$f(x)=\log (x+\sqrt{x^2+1})$とする.ただし,対数は自然対数とする.

(i) $f(x)$の導関数$f^\prime(x)$を求めよ.
(ii) 直線$y=x$と直線$\displaystyle x=\frac{3}{4}$および曲線$y=f(x)$で囲まれた部分の面積$S$を求めよ.

(2)$\displaystyle \alpha=\frac{2}{5}\pi$とする.

(i) $\cos 3\alpha=\cos 2\alpha$が成り立つことを用いて,$\cos \alpha$と$\cos 2\alpha$の値を求めよ.
(ii) $2$個のさいころを同時に投げるとき,出る目の数の和を$N$とする.このとき,座標平面上の点$\mathrm{P}(1,\ \sqrt{3})$を原点$\mathrm{O}$のまわりに角$N \alpha$だけ回転した点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$の内積を$T$とする.$T$の期待値を求めよ.
大分大学 国立 大分大学 2013年 第3問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$|\overrightarrow{a}|=\sqrt{3}$,$|\overrightarrow{b}|=\sqrt{2}$,$\overrightarrow{a} \cdot \overrightarrow{b}=t$とする.点$\mathrm{A}$から直線$\mathrm{OB}$に垂線$\mathrm{AP}$を下ろし,点$\mathrm{B}$から直線$\mathrm{OA}$に垂線$\mathrm{BQ}$を下ろし,直線$\mathrm{AP}$と直線$\mathrm{BQ}$の交点を$\mathrm{R}$とする.

(1)$t$の範囲を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$t$と$\overrightarrow{b}$で,$\overrightarrow{\mathrm{OQ}}$を$t$と$\overrightarrow{a}$で表しなさい.
(3)$t=1$のとき,$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表し,$|\overrightarrow{\mathrm{OR}}|$を求めなさい.
お茶の水女子大学 国立 お茶の水女子大学 2013年 第6問
座標平面上の$3$点$\mathrm{A}(a_1,\ a_2)$,$\mathrm{B}(b_1,\ b_2)$,$\mathrm{C}(c_1,\ c_2)$について考える.
\[ I=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\quad J=\left( \begin{array}{cc}
-\displaystyle\frac{1}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
\displaystyle\frac{\sqrt{3}}{2} & -\displaystyle\frac{1}{2}
\end{array} \right) \]
とおく.

(1)$I+J+J^2,\ J^3$を求めよ.
(2)$\left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right) \neq \left( \begin{array}{c}
0 \\
0
\end{array} \right)$,$\left( \begin{array}{c}
b_1 \\
b_2
\end{array} \right)=J \left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right)$,$\left( \begin{array}{c}
c_1 \\
c_2
\end{array} \right)=J^2 \left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right)$のとき,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は正三角形をなすことを示せ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が異なり,
\[ \left( \begin{array}{c}
a_1 \\
a_2
\end{array} \right)+J \left( \begin{array}{c}
b_1 \\
b_2
\end{array} \right)+J^2 \left( \begin{array}{c}
c_1 \\
c_2
\end{array} \right)=\left( \begin{array}{c}
0 \\
0
\end{array} \right) \]
が成り立つとき,三角形$\mathrm{ABC}$が正三角形となることを示せ.
群馬大学 国立 群馬大学 2013年 第3問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の中点$\mathrm{M}$は$\mathrm{AM}=\mathrm{BM}=1$を満たす.内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を$t$とする.

(1)$t$のとり得る値の範囲を求めよ.
(2)$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{\sqrt{7}}{4}$となるとき,$t$の値を求めよ.
(3)$\triangle \mathrm{ABC}$の周の長さ$\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$の最大値と,そのときの$t$の値を求めよ.
琉球大学 国立 琉球大学 2013年 第2問
$xy$平面上の曲線$C$は媒介変数$\theta$を用いて
\[ x=\frac{2}{3}\sqrt{3}\cos \theta+\frac{\sqrt{6}}{3}\sin \theta,\quad y=\frac{\sqrt{3}}{3}\cos \theta-\frac{\sqrt{6}}{3}\sin \theta \quad (0 \leqq \theta \leqq \pi) \]
と表される.このとき,次の問いに答えよ.

(1)曲線$C$を表す$x$と$y$の関係式を求め,$xy$平面に図示せよ.
(2)点$(2,\ 0)$から曲線$C$に引いた接線の方程式と接点の座標を求めよ.
東京農工大学 国立 東京農工大学 2013年 第4問
$xy$平面上に$2$つの曲線
\[ \begin{array}{llll}
C_1: & y=\tan x+\displaystyle\frac{\sqrt{3}}{3} & & \displaystyle\left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right) \\
C_2: & \displaystyle y=\sqrt{3}k \left( \cos 2x-\frac{1}{2} \right) & & \displaystyle\left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right)
\end{array} \]
がある.ただし$k$は実数とする.このとき,次の問いに答えよ.

(1)$t=\tan x$とおく.$\cos 2x$を$t$の式で表せ.
(2)$\displaystyle k=-\frac{4}{3}$のとき,$C_1$と$C_2$で囲まれた部分の面積$S$を求めよ.
(3)$C_1$と$C_2$の共有点の個数が$1$になるときの$k$の範囲を求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第2問
次の各問いに答えよ.

(1)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $m,\ n$が自然数ならば,$\displaystyle \frac{m}{n} \neq \sqrt{2}$である.このことを証明せよ.
(ii) $p,\ q$が自然数ならば,$\sqrt{2}$は$\displaystyle \frac{p}{q}$と$\displaystyle \frac{2q}{p}$の間にある.すなわち,$\displaystyle \frac{p}{q}<\sqrt{2}<\frac{2q}{p}$または$\displaystyle \frac{2q}{p}<\sqrt{2}<\frac{p}{q}$が成り立つ.このことを証明せよ.

(2)定数$a$は実数で,$a>0,\ a \neq 1$とする.このとき,すべての正の実数$x,\ y$に対して$x^{\log_ay}=y^{\log_ax}$が成り立つ.このことを証明せよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。