タグ「根号」の検索結果

96ページ目:全1904問中951問~960問を表示)
鳥取大学 国立 鳥取大学 2013年 第3問
$2$次方程式$x^2+\sqrt{2}x+1=0$について,次の問いに答えよ.

(1)この$2$次方程式の解を求めよ.
(2)(1)で求めた解のうち,虚部が正のものを$\alpha$,負のものを$\beta$とおく.このとき,以下の値を求めよ.
\[ (ⅰ) \alpha^4 \qquad (ⅱ) \alpha^8 \qquad (ⅲ) \alpha\beta \qquad \tokeishi \alpha^{1010} \qquad \tokeigo \alpha^{2017}\beta^{2013} \]
電気通信大学 国立 電気通信大学 2013年 第4問
座標平面上の$2$つの直線$\ell,\ m$を,それぞれ
\[ \ell:y=\frac{1}{\sqrt{3}}x,\quad m:y=-\frac{1}{\sqrt{3}}x \]
とし,$\ell$上に点$\mathrm{A}(\sqrt{3}s,\ s)$を,$m$上に点$\mathrm{B}(\sqrt{3}t,\ -t)$をとる. \\
ただし,$s>0$,$t>0$とする.さらに,正三角形$\mathrm{ABC}$を,頂点$\mathrm{C}$が直線$\mathrm{AB}$に関して原点$\mathrm{O}$と同じ側になるように定める.このとき,以下の問いに答えよ.
\img{178_2358_2013_1}{50}


(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一円周上にあることを示し,点$\mathrm{C}$が$y$軸上にあることを証明せよ.
(2)点$\mathrm{C}$の$y$座標を$s,\ t$の式で表せ.
(3)点$\mathrm{D}(X,\ Y)$を,直線$\mathrm{AB}$に関して点$\mathrm{C}$と対称な点とする.このとき,$X$と$Y$をそれぞれ$s,\ t$の式で表せ.
(4)線分$\mathrm{AB}$の長さを$s,\ t$の式で表せ.
(5)点$\mathrm{A}$,$\mathrm{B}$が線分$\mathrm{AB}$の長さを$\sqrt{3}$に保ちながら動くとき,点$\mathrm{D}$の軌跡を求め,その概形を図示せよ.
防衛医科大学校 国立 防衛医科大学校 2013年 第1問
以下の問に答えよ.

(1)$\mathrm{AB}=\mathrm{AC}$である二等辺三角形$\mathrm{ABC}$において辺$\mathrm{AC}$上に$\mathrm{AD}=\mathrm{BD}=\mathrm{BC}$となる点$\mathrm{D}$をとることができるとき,$\displaystyle \sin \frac{A}{2}$はいくらか.
(2)実数の組$(x,\ y)$が連立不等式$\left\{ \begin{array}{l}
x^2+y^2 \leqq 4 \\
y \geqq \displaystyle\frac{x^2}{\sqrt{2}}
\end{array} \right.$を満たすとき,$\sqrt{2}x+y$の最大値と最小値を求めよ.
(3)座標空間の$2$点$\mathrm{A}(1,\ -2,\ -1)$,$\mathrm{B}(4,\ 2,\ 4)$を通る直線$\ell_1$上にあり,原点までの距離が$34$の点を$\mathrm{C}$($\mathrm{C}$の$x$座標は正とする).点$\mathrm{A}$を通り方向ベクトル$\overrightarrow{h}=(4,\ -3,\ -5)$をもつ直線を$\ell_2$とする.このとき,$\mathrm{C}$と$\ell_2$を含む平面において,$\ell_2$に関して$\mathrm{C}$と対称な点$\mathrm{D}$の座標を求めよ.
滋賀大学 国立 滋賀大学 2013年 第4問
$\triangle \mathrm{O}_1 \mathrm{A}_1 \mathrm{B}_1$において辺$\mathrm{A}_1 \mathrm{B}_1$,$\mathrm{B}_1 \mathrm{O}_1$,$\mathrm{O}_1 \mathrm{A}_1$の中点をそれぞれ$\mathrm{O}_2$,$\mathrm{A}_2$,$\mathrm{B}_2$とする.次に,$\triangle \mathrm{O}_2 \mathrm{A}_2 \mathrm{B}_2$において辺$\mathrm{A}_2 \mathrm{B}_2$,$\mathrm{B}_2 \mathrm{O}_2$,$\mathrm{O}_2 \mathrm{A}_2$の中点をそれぞれ$\mathrm{O}_3$,$\mathrm{A}_3$,$\mathrm{B}_3$とする.これをくり返して,$\triangle \mathrm{O}_n \mathrm{A}_n \mathrm{B}_n$において辺$\mathrm{A}_n \mathrm{B}_n$,$\mathrm{B}_n \mathrm{O}_n$,$\mathrm{O}_n \mathrm{A}_n$の中点をそれぞれ$\mathrm{O}_{n+1}$,$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$とする.ただし,$n=1,\ 2,\ 3,\ \cdots$である.また,$\overrightarrow{\mathrm{O}_1 \mathrm{A}_1}=\overrightarrow{a}$,$\overrightarrow{\mathrm{O}_1 \mathrm{B}_1}=\overrightarrow{b}$,$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=\sqrt{6}$,$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{3}{2}$である.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{O}_1 \mathrm{A}_1 \mathrm{B}_1$の重心を$\mathrm{G}$とするとき,$|\overrightarrow{\mathrm{GO}}_1|$,$|\overrightarrow{\mathrm{GA}}_1|$,$|\overrightarrow{\mathrm{GB}}_1|$の値を求めよ.
(2)$\triangle \mathrm{O}_n \mathrm{A}_n \mathrm{B}_n$の重心が$\mathrm{G}$であることを,数学的帰納法を用いて証明せよ.
(3)$\triangle \mathrm{O}_n \mathrm{A}_n \mathrm{B}_n$が$\mathrm{G}$を中心とする半径$10^{-4}$の円の内部に含まれる最小の$n$の値を求めよ.ただし,$\log_{10}2=0.3010$とする.
宇都宮大学 国立 宇都宮大学 2013年 第5問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の半円$C:x^2+y^2=1 \ (y>0)$上の点を$\mathrm{P}$とする.$a>1$に対して$x$軸上の定点を$\mathrm{A}(a,\ 0)$とし,直線$\mathrm{AP}$と$y$軸の交点を$\mathrm{Q}$,$\mathrm{Q}$を通り$x$軸に平行な直線と直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OP}$が$x$軸の正の方向となす角を$\theta$,$\mathrm{OR}=r$とするとき,直線$\mathrm{AQ}$の方程式を$a,\ \theta,\ r$を用いて表せ.
(2)点$\mathrm{P}$が$C$上を動くとき,点$\mathrm{R}$のえがく曲線の方程式を求めよ.
(3)(2)で得られた曲線の$a=\sqrt{2}$であるときの概形をかけ.
島根大学 国立 島根大学 2013年 第3問
数列$\{a_n\},\ \{b_n\}$を,$\displaystyle a_1=1,\ b_1=0,\ a_{n+1}=\frac{1}{4}a_n-\frac{\sqrt{3}}{4}b_n,\ b_{n+1}=\frac{\sqrt{3}}{4}a_n+\frac{1}{4}b_n$によって定め,座標が$(a_n,\ b_n)$である点を$\mathrm{C}_n$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}_n}$の大きさ$|\overrightarrow{\mathrm{OC}_n}|$を,$n$を用いて表せ.
(2)$\overrightarrow{\mathrm{OC}_n}$と$\overrightarrow{\mathrm{OC}_{n+1}}$のなす角を求めよ.
(3)$S_n$を$\triangle \mathrm{OC}_n \mathrm{C}_{n+1}$の面積とするとき,$\displaystyle S_n \leqq \frac{1}{2^{2013}}$をみたす最小の自然数$n$を求めよ.
奈良女子大学 国立 奈良女子大学 2013年 第6問
$t$を$0 \leqq t \leqq \sqrt{3}-1$をみたす実数とする.座標平面上に$6$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 1)$,$\mathrm{B}(\sqrt{3},\ 0)$,$\mathrm{P}(t-1,\ 0)$,$\mathrm{Q}(t,\ 1)$,$\mathrm{R}(t+1,\ 0)$がある.$2$直線$\mathrm{PQ}$と$\mathrm{AB}$の交点を$\mathrm{M}$,$2$直線$\mathrm{QR}$と$\mathrm{AB}$の交点を$\mathrm{N}$とする.次の問いに答えよ.

(1)$2$点$\mathrm{M}$,$\mathrm{N}$の$x$座標をそれぞれ求めよ.
(2)三角形$\mathrm{OAB}$と三角形$\mathrm{PQR}$の共通部分の面積を$S$とおく.$S$を$t$を用いて表せ.
(3)(2)で求めた$S$が最大となるような$t$の値を求めよ.
三重大学 国立 三重大学 2013年 第1問
$a,\ b$を実数とし,$i$を虚数単位とする.$2$次方程式$x^2+ax+b=0$の解の$1$つが$1-\sqrt{2}i$であるとき,以下の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$2$次関数$y=x^2+ax+b$のグラフの軸と頂点を求め,そのグラフをかけ.
(3)曲線$y=x^2+ax+b$と直線$y=3$とで囲まれた部分の面積を求めよ.
三重大学 国立 三重大学 2013年 第4問
$e$で自然対数の底を表す.関数$f(x)$を
\[ f(x)=\log (x+\sqrt{x^2+e}) \]
で定めるとき,以下の問いに答えよ.

(1)関数$f(x)$を微分せよ.また$f^\prime(x)$が偶関数であることを示せ.
(2)定積分
\[ \int_{-1}^1 f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \]
を求めよ.
(3)数列$\{a_n\}$を
\[ a_n=\int_{-1}^1 x^{2n} f(x) \cos \left( \frac{\pi}{2}x \right) \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.$n$を$2$以上とするとき,$a_n$と$a_{n-1}$の間に成り立つ関係式を求めよ.
三重大学 国立 三重大学 2013年 第4問
$y^2=(x-2)^2(x+1)$で決まる曲線を$C$とする.以下の問いに答えよ.

(1)関数$y=(x-2) \sqrt{x+1}$の増減を調べ,関数のグラフの概形をかけ.
(2)曲線$C$の概形をかけ.
(3)曲線$C$で囲まれる部分の面積を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。