タグ「根号」の検索結果

95ページ目:全1904問中941問~950問を表示)
室蘭工業大学 国立 室蘭工業大学 2013年 第5問
$s,\ t$を実数とする.行列$A=\left( \begin{array}{cc}
-\displaystyle\frac{1}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
s & t
\end{array} \right)$は逆行列$A^{-1}$をもち,$A^{-1}=A$であるとする.

(1)$s,\ t$の値を求めよ.
(2)行列$A$は直線$y=mx$($m$は実数)に関する対称移動を表している.$m$の値を求めよ.
帯広畜産大学 国立 帯広畜産大学 2013年 第1問
自然数$n$について,$\{a_n\}$は初項$a$,公差$d$の等差数列であり,その一般項を$a_n$で表し,初項から第$n$項までの和を$S_a(n)$で表す.また,$\{b_n\}$は一般項が$b_n=2^{a_n}$で定義される数列であり,その初項から第$n$項までの和を$S_b(n)$で表す.次の各問に答えよ.

(1)$a=1,\ d=2$とする.

(i) $n$を用いて$a_n$と$S_a(n)$を表しなさい.
(ii) $\log_{10} \{S_a(1000)\}$の値を求めなさい.
(iii) $10<S_a(n)<50$を満たすすべての$n$の値を求めなさい.

(2)$b_3=\sqrt[5]{4},\ b_7=\sqrt[5]{64}$とする.

(i) $a$と$d$の値を求めなさい.
(ii) $b_{n+1}$の$b_n$に対する比を求めなさい.
(iii) $n$を用いて$b_n$と$S_b(n)$を表しなさい.
\mon[$\tokeishi$] $b_n=2$のとき,$n$と$S_b(n)$のそれぞれの値を求めなさい.

(3)自然数$m$について,$u=\sin a_{2m-1}+\cos a_{2m-1}$,$v=\sin a_{2m}-\cos a_{2m}$,$y=uv$,$0<a<2\pi$,$d=\pi$とする.

(i) $u$の最大値と,$u$が最大値をとるときの$a$の値を求めなさい.
(ii) $v$の最大値と,$v$が最大値をとるときの$a$の値を求めなさい.
(iii) $y$の最大値と,$y$が最大値をとるときの$a$の値を求めなさい.
九州工業大学 国立 九州工業大学 2013年 第3問
関数$f(x)=\log x$がある.曲線$y=f(x)$の点$(t,\ \log t)$における接線の方程式を$y=g(x)$とするとき,次に答えよ.ただし,対数は自然対数を表し,$e$は自然対数の底とする.

(1)$x>0$のとき,不等式$f(x)-g(x) \leqq 0$を証明せよ.

(2)$\displaystyle t>\frac{1}{2}$のとき,$\displaystyle \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}f(x) \, dx$と$\displaystyle \int_{t-\frac{1}{2}}^{t+\frac{1}{2}}g(x) \, dx$をそれぞれ$t$を用いて表せ.

(3)自然数$n$に対して,$n!$と$\displaystyle \sqrt{2} \left( n+\frac{1}{2} \right)^{n+\frac{1}{2}}e^{-n}$の大小を比較せよ.
茨城大学 国立 茨城大学 2013年 第1問
次の各問に答えよ.

(1)$0 \leqq x \leqq \pi$とする.$-1 \leqq \tan x \leqq \sqrt{3}$を満たす$x$の範囲を求めよ.
(2)$x$が(1)で求めた範囲を動くとき,$f(x)=\sin x+2 \cos x$の最大値と最小値を求めよ.
茨城大学 国立 茨城大学 2013年 第1問
以下の各問に答えよ.

(1)関数$f(x)=\log_a (ax)$を微分せよ.ただし,$a>0$かつ$a \neq 1$とする.

(2)関数$\displaystyle g(x)=\int_1^{x^2+1}t^2(t-1)^5 \, dt$を微分せよ.

(3)定積分$\displaystyle \int_0^1 \frac{1-x}{1+x} \, dx$を求めよ.

(4)定積分$\displaystyle \int_1^e \frac{\log \sqrt{x}}{\sqrt{x}} \, dx$を求めよ.ただし,対数は自然対数であり,$e$は自然対数の底である.
茨城大学 国立 茨城大学 2013年 第2問
$f(x)=x^3-x+5$として,曲線$y=f(x)$を$C$とする.点$\mathrm{P}(a,\ f(a))$における$C$の接線を$\ell$,法線を$n$とする.以下の各問に答えよ.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通り,かつ点$\mathrm{P}$における$C$の接線に直交する直線のことである.

(1)$\ell,\ n$の方程式をそれぞれ求めよ.
(2)$\ell$と$C$の共有点で,$\mathrm{P}$以外のものの個数を求めよ.
(3)$\displaystyle |a|<\frac{1}{\sqrt{3}}$のときには,$n$と$C$との共有点が$\mathrm{P}$以外にも存在することを示せ.
東京学芸大学 国立 東京学芸大学 2013年 第3問
下の問いに答えよ.

(1)方程式$x \cos x=\sin x$は$\displaystyle \frac{4\pi}{3}<x<2\pi$の範囲にただ$1$つの解をもつことを示せ.
(2)(1)の解を$\alpha$とおくとき,$0<x<2\pi$において不等式
\[ \frac{\sin x}{x} \geqq -\frac{1}{\sqrt{1+\alpha^2}}>-\frac{3}{4\pi} \]
が成り立つことを示せ.
滋賀医科大学 国立 滋賀医科大学 2013年 第1問
正の整数$n,\ p,\ q$について,等式
\[ (\sqrt{p}+\sqrt{q})^{2n-1}=a_n \sqrt{p}+b_n \sqrt{q} \]
を考える.

(1)ある正の整数$a_n,\ b_n$が上の等式を満たすことを示せ.
(2)$\sqrt{pq}$が整数でないとき,(1)の$a_n,\ b_n$はただ一通りに定まることを示せ.
(3)$\sqrt{pq}$が整数でないとき,(1)の$a_n,\ b_n$に対して$\displaystyle \lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ.
九州工業大学 国立 九州工業大学 2013年 第4問
曲線$\displaystyle C_1:\frac{x^2}{4}+y^2=1 \ (x \geqq 0)$と曲線$C_2:x^2+y^2=1 \ (x \geqq 0)$がある.曲線$C_1$の点$\mathrm{P}(\sqrt{s},\ \sqrt{t}) \ (s>0,\ t>0)$における法線を$\ell$とする.次に答えよ.

(1)$s$を$t$を用いて表せ.また,直線$\ell$の方程式を$t$を用いて表せ.
(2)直線$\ell$が曲線$C_2$に接するときの点$\mathrm{P}$の座標および接点$\mathrm{Q}$の座標を求めよ.
(3)$\mathrm{P}$,$\mathrm{Q}$は(2)で求めた点とし,点$(0,\ 1)$を$\mathrm{R}$とする.曲線$C_1$,弧$\mathrm{RQ}$および線分$\mathrm{PQ}$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
鳥取大学 国立 鳥取大学 2013年 第2問
$0 \leqq x \leqq 2\pi$で定義された関数$\displaystyle f(x)=\frac{\cos x}{\sqrt{2}+\sin x}$について,次の問いに答えよ.

(1)関数$f(x)$の増減を調べ,最大値,最小値を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}}f(x) \, dx$を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。