タグ「根号」の検索結果

89ページ目:全1904問中881問~890問を表示)
北九州市立大学 公立 北九州市立大学 2014年 第1問
以下の問いの空欄$[ア]$~$[ス]$に適する数値,式などを記せ.

(1)直線$\displaystyle y=\frac{x}{\sqrt{3}}+1$と$x$軸の正の向きとのなす角は$[ア]$であり,この直線と放物線$\displaystyle y=\frac{x^2}{4}$の共有点の座標は$([イ],\ [ウ])$と$([エ],\ [オ])$である.
(2)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{\sin A}{9}=\frac{\sin B}{7}=\frac{\sin C}{5}$が成り立つとき,この三角形の最も大きい角の余弦の値は$[カ]$である.この三角形の最も大きい辺の長さを$9$とすると,三角形の面積は$[キ]$である.
(3)同じ$2$つの箱と,同じ$4$つの球がある.$2$つの箱にすべての球を分配するときの組み合わせは$[ク]$通りである.また,大小の$2$つの箱と,$1$から$4$までの数が書かれた$4$つの球があるとき,すべての球を分配するときの組み合わせは$[ケ]$通りである.ただし,片方の箱のみに球が入っている場合も含む.
(4)$\displaystyle x=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{7}+\sqrt{3}},\ y=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{7}-\sqrt{3}}$のとき,$x^2+y^2$の値は$[コ]$,$x^3-y^3$の値は$[サ]$となる.
(5)大小の$2$個のさいころを投げ,出た目が同じ場合は$10$点,大のさいころの目のほうが大きい場合は$5$点,それ以外の場合には得点は得られないとするとき,点数を得られる目が出る確率は$[シ]$で,得点の期待値は$[ス]$点である.
福岡女子大学 公立 福岡女子大学 2014年 第2問
関数$f(x)=\cos^2 x+\sqrt{3} \sin x \cos x$について,以下の問に答えなさい.

(1)$f(x)$が$f(x)=r \sin (ax+b)+c$となるように,定数$r,\ a,\ b,\ c$を求めなさい.ただし,$\displaystyle -\frac{\pi}{2} \leqq b \leqq \frac{\pi}{2}$とする.
(2)$0 \leqq x \leqq \pi$の範囲で,関数$y=f(x)$のグラフを描き,$f(x)$の最大値を与える$x$の値,および$f(x)$の最小値を与える$x$の値を求めなさい.
京都府立大学 公立 京都府立大学 2014年 第1問
$\mathrm{O}$を原点とする$xyz$空間内に$5$点$\mathrm{A}(10,\ 0,\ 0)$,$\mathrm{B}(10,\ 5 \sqrt{3},\ 15)$,$\mathrm{C}(8,\ -\sqrt{3},\ -3)$,$\mathrm{D}(8,\ 5 \sqrt{3},\ 15)$,$\mathrm{E}(-4,\ \sqrt{3},\ 3)$をとる.$2$点$\mathrm{O}$,$\mathrm{A}$を通る直線を$\ell_1$,$2$点$\mathrm{O}$,$\mathrm{B}$を通る直線を$\ell_2$,$2$点$\mathrm{C}$,$\mathrm{D}$を通る直線を$\ell_3$,$2$点$\mathrm{C}$,$\mathrm{E}$を通る直線を$\ell_4$とする.$2$つの直線$\ell_1$,$\ell_3$の交点を$\mathrm{F}$,$2$つの直線$\ell_2$,$\ell_3$の交点を$\mathrm{G}$,$2$つの直線$\ell_2$,$\ell_4$の交点を$\mathrm{H}$,$2$つの直線$\ell_1$,$\ell_4$の交点を$\mathrm{I}$とする.以下の問いに答えよ.

(1)$6$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は同一平面上にあることを示せ.
(2)$4$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$の座標を求めよ.
(3)四角形$\mathrm{FGHI}$の面積を求めよ.
(4)四角形$\mathrm{FGHI}$に外接する円の中心座標と半径を求めよ.
福岡女子大学 公立 福岡女子大学 2014年 第2問
関数$f(x)=\cos^2 x+\sqrt{3} \sin x \cos x$について,以下の問に答えなさい.

(1)$f(x)$が$f(x)=r \sin (ax+b)+c$となるように,定数$r,\ a,\ b,\ c$を求めなさい.ただし,$\displaystyle -\frac{\pi}{2} \leqq b \leqq \frac{\pi}{2}$とする.
(2)$0 \leqq x \leqq \pi$の範囲で,関数$y=f(x)$のグラフを描き,$f(x)$の最大値を与える$x$の値,および$f(x)$の最小値を与える$x$の値を求めなさい.
三重県立看護大学 公立 三重県立看護大学 2014年 第1問
次の$(1)$から$(8)$の$[ ]$に適する答えを書きなさい.

(1)点$(2,\ 1)$から$3x-4y=5$までの距離は$[ ]$である.
(2)サイコロを$3$回ふったとき出た目を$a,\ b,\ c$とすると,$(a-b)(b-c)(c-a)=0$となるときの確率は$[ ]$である.
(3)数列$3,\ 5,\ 9,\ 17,\ 33,\ 65,\ \cdots$の第$n$項は$[ ]$となる.
(4)正の実数$x,\ y$が$x+y-2=0$を満たすとき,$xy$の値の取り得る範囲は$[ア]<xy \leqq [イ]$となる.
(5)$2x^3-x^2-5x-2=0$を解くと,$x=[ ],\ [ ],\ [ ]$となる.
(6)$\sqrt{11-\sqrt{96}}$の二重根号をはずし,簡単にすると$[ ]$となる.
(7)$2 \sin^2 x-\cos 2x-\cos^2 x=\sin^2 x$を解くと,$x=[ ],\ [ ]$となる.ただし,$0 \leqq x \leqq \pi$とする.
(8)$\log_3 x-3 \log_x 9=-1$を解くと,$x=[ ],\ [ ]$となる.ただし,$x>0,\ x \neq 1$とする.
埼玉大学 国立 埼玉大学 2013年 第2問
すべての項が整数である数列を整数列と呼ぶ.

(1)整数列$\{\alpha_n\},\ \{\beta_n\}$を次で定める.
\[ (5+2 \sqrt{6})^n=\alpha_n+\sqrt{6}\beta_n \quad n=1,\ 2,\ \cdots \]

(i) 数列$\gamma_n=\alpha_n-\sqrt{6}\beta_n$は等比数列になることを示し,その一般項を求めよ.
(ii) 一般項$\alpha_n,\ \beta_n$を求めよ.

(2)整数列$\{a_n\},\ \{b_n\},\ \{c_n\},\ \{d_n\}$を次で定める.
\[ (\sqrt{2}+\sqrt{3})^n=a_n+\sqrt{2}b_n+\sqrt{3}c_n+\sqrt{6}d_n \quad n=1,\ 2,\ \cdots \]

(i) $a_3,\ b_3,\ c_3,\ d_3$をそれぞれ求めよ.
(ii) 一般項$a_n,\ b_n,\ c_n,\ d_n$を先の$\alpha_n,\ \beta_n$を用いて表せ.
京都大学 国立 京都大学 2013年 第4問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$における$\displaystyle \cos x+\frac{\sqrt{3}}{4}x^2$の最大値を求めよ.ただし$\pi>3.1$および$\sqrt{3}>1.7$が成り立つことは証明なしに用いてよい.
京都大学 国立 京都大学 2013年 第5問
$xy$平面内で,$y$軸上の点$\mathrm{P}$を中心とする円$C$が$2$つの曲線
\[ C_1:y=\sqrt{3}\log (1+x),\quad C_2:y=\sqrt{3}\log (1-x) \]
とそれぞれ点$\mathrm{A}$,点$\mathrm{B}$で接しているとする.さらに$\triangle \mathrm{PAB}$は$\mathrm{A}$と$\mathrm{B}$が$y$軸に関して対称な位置にある正三角形であるとする.このとき$3$つの曲線$C$,$C_1$,$C_2$で囲まれた部分の面積を求めよ.
京都大学 国立 京都大学 2013年 第4問
$\alpha,\ \beta$を実数とする.$xy$平面内で,点$(0,\ 3)$を中心とする円$C$と放物線
\[ y=-\frac{x^2}{3}+\alpha x-\beta \]
が点$\mathrm{P}(\sqrt{3},\ 0)$を共有し,さらに$\mathrm{P}$における接線が一致している.このとき以下の問に答えよ.

(1)$\alpha,\ \beta$の値を求めよ.
(2)円$C$,放物線$\displaystyle y=-\frac{x^2}{3}+\alpha x-\beta$および$y$軸で囲まれた部分の面積を求めよ.
横浜国立大学 国立 横浜国立大学 2013年 第1問
次の問いに答えよ.

(1)不定積分$\displaystyle \int e^{-x}\sin^2 x \, dx$を求めよ.
(2)定積分$\displaystyle \int_0^1 \sqrt{1+2 \sqrt{x}} \, dx$を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。