タグ「根号」の検索結果

82ページ目:全1904問中811問~820問を表示)
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)整式$f(x)=ax^3+bx^2+cx+d$は,$x^2+3$で割ると余りは$x+3$であり,$x^2+x+2$で割ると余りは$3x+5$である.このとき,
\[ a=[ア],\quad b=[イ],\quad c=[ウ],\quad d=[エ] \]
である.
(2)$x$の関数
\[ f(x)=(\log_2 x)^2+\log_2 (\sqrt{2}x) \]
は,$\displaystyle x=\frac{\sqrt{[オ]}}{[カ]}$のとき最小値$\displaystyle \frac{[キ]}{[ク]}$をとる.
(3)総数$100$本のくじがあり,その当たりくじの賞金と本数は下の表の通りである.この中から$1$本のくじを引くときの賞金の期待値は$[ケ]$円であり,$2$本のくじを同時に引くときの賞金の合計金額の期待値は$[コ]$円である.


\begin{tabular}{|r|r|r|}
\hline
& 賞金 & 本数 \\ \hline
$1$等 & $1000$円 & $1$本 \\ \hline
$2$等 & $500$円 & $2$本 \\ \hline
$3$等 & $200$円 & $5$本 \\ \hline
はずれ & $0$円 & $92$本 \\ \hline
\end{tabular}
上智大学 私立 上智大学 2014年 第2問
$\mathrm{AB}=3$,$\mathrm{BC}=3$,$\mathrm{CA}=2$である$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$上を動く点を$\mathrm{P}$とし,$\mathrm{AP}=t$とする.点$\mathrm{P}$から辺$\mathrm{AC}$に下ろした垂線を$\mathrm{PQ}$,辺$\mathrm{BC}$に下ろした垂線を$\mathrm{PR}$とする.ただし,点$\mathrm{P}$が点$\mathrm{A}$と一致するとき,点$\mathrm{Q}$も点$\mathrm{A}$と一致し,点$\mathrm{P}$が点$\mathrm{B}$と一致するとき,点$\mathrm{R}$も点$\mathrm{B}$と一致するものとする.

(1)$\displaystyle \mathrm{CQ}=\frac{[サ]}{[シ]}t+[ス]$,$\displaystyle \mathrm{CR}=\frac{[セ]}{[ソ]}t+\frac{[タ]}{[チ]}$である.
(2)$\mathrm{QR}$は$t=[ツ]$のとき最大値$[テ] \sqrt{[ト]}$をとり,$\displaystyle t=\frac{[ナ]}{[ニ]}$のとき最小値$\displaystyle \frac{[ヌ]}{[ネ]}$をとる.
(3)$\triangle \mathrm{CQR}$の面積は$\displaystyle t=\frac{[ノ]}{[ハ]}$のとき最大値$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$をとる.
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
上智大学 私立 上智大学 2014年 第1問
関数$f(x)$を
\[ f(x)=a \sin 2x-\sin x+\cos x \]
とする.ただし,$a$を負の実数とする.

(1)$t=-\sin x+\cos x$とおくと,$f(x)$は$t$を用いて
\[ [ア]at^2+[イ]t+[ウ]a \]
と表される.
(2)$f(x)$は,$\displaystyle \frac{[エ]}{[オ]} \sqrt{[カ]}<a<0$のとき,


最大値$[キ]a+\sqrt{[ク]}$
最小値$[ケ]a+[コ] \sqrt{[サ]}$


をとり,$\displaystyle a \leqq \frac{[エ]}{[オ]} \sqrt{[カ]}$のとき,


最大値$[シ]a+\sqrt{[ス]}$
最小値$\displaystyle [セ]a+\frac{1}{[ソ]a}$


をとる.
上智大学 私立 上智大学 2014年 第2問
$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\angle \mathrm{B}={60}^\circ$の$\triangle \mathrm{ABC}$がある.

(1)$\mathrm{AC}=[ア]$,$\triangle \mathrm{ABC}$の面積は$[イ] \sqrt{[ウ]}$,$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[エ]}$である.
(2)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[オ]}{[カ]} \sqrt{[キ]}$である.
(3)$\triangle \mathrm{ABC}$の外接円の点$\mathrm{B}$を含まない弧$\mathrm{AC}$上に$\mathrm{AD}=3$となる点$\mathrm{D}$をとる.このとき,$\mathrm{CD}=[ク]$である.
(4)$\displaystyle \cos \angle \mathrm{BAD}=\frac{[ケ]}{[コ]}$,$\displaystyle \mathrm{BD}=\frac{[サ]}{[シ]}$である.
(5)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\displaystyle \cos \angle \mathrm{AED}=\frac{[ス]}{[セ]}$である.
上智大学 私立 上智大学 2014年 第3問
$a$を$-1$でない実数とし,座標平面において,放物線
\[ C:y=(x^2-2x+1)+a(x^2-5x+6) \]
を考える.

(1)$C$は,$a$の値によらず$2$点$\mathrm{P}([ソ],\ [タ])$,$\mathrm{Q}([チ],\ [ツ])$を必ず通る.ただし,$[ソ]<[チ]$とする.
(2)点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{Q}$における$C$の接線を$\ell^\prime$とする.$\ell$と$\ell^\prime$の交点の座標は$\displaystyle \left( \frac{[テ]}{[ト]},\ \frac{[ナ]}{[ニ]}a+[ヌ] \right)$である.

(3)$C$の軸は$\displaystyle x=\frac{1}{2} \left( [ネ]+\frac{[ノ]}{a+[ハ]} \right)$である.

(4)$C$が$x$軸と異なる$2$点で交わるのは

$a<[ヒ]$ \ または \ $[フ]<a$ \quad (ただし$a \neq -1$)

のときである.
(5)$a=[フ]$のとき,$C$は点$\displaystyle \left( \frac{[ヘ]}{[ホ]},\ 0 \right)$で$x$軸と接する.
(6)$C$が$x$軸と$2$点$(\alpha,\ 0)$,$(\beta,\ 0)$(ただし$\alpha<\beta$)で交わるとき,$\displaystyle \beta-\alpha=\frac{2}{3} \sqrt{5}$となるのは,$a=[マ]$または$\displaystyle a=\frac{[ミ]}{[ム]}$のときである.ただし,$\displaystyle [マ]<\frac{[ミ]}{[ム]}$とする.$a=[マ]$のとき,$C$と$x$軸で囲まれた図形の面積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
東京理科大学 私立 東京理科大学 2014年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (0 \leqq a<b)$に対して,$L(a,\ b)$を線分$\mathrm{AB}$の長さとし,$S(a,\ b)$を線分$\mathrm{AB}$と放物線$y=x^2$で囲まれた図形の面積とする.さらに,$T(a,\ b)$を$a \leqq x \leqq b$の範囲で放物線$y=x^2$と$x$軸で囲まれた図形の面積とする.

(1)$(ⅰ)$ $\displaystyle L(0,\ t)=\frac{1}{2}L(0,\ 1)$となるのは,$\displaystyle t^2=\frac{1}{[ア]}(\sqrt{[イ]}-[ウ])$となるときである.
$(ⅱ)$ $L(0,\ t)=L(t,\ 1)$となるのは,$\displaystyle t=\frac{1}{[エ]}(\sqrt{[オ]}-[カ])$のときである.
(2)$(ⅰ)$ $\displaystyle S(0,\ t)=\frac{1}{2}S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[キ]}{[ク]}$となるときである.

$(ⅱ)$ $T(t,\ 2)=S(0,\ 2)$となるのは,$\displaystyle \log_2 t=\frac{[ケ]}{[コ]}$となるときである.
東京理科大学 私立 東京理科大学 2014年 第3問
$\mathrm{O}$を原点とする$xyz$空間の$x$軸上,$y$軸上,$z$軸上にそれぞれ点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\mathrm{AB}=3$,$\mathrm{AC}=2$であるという.そのとき,$\mathrm{BC}=a$とおき,三角形$\mathrm{ABC}$の面積を$S$とおく.

(1)$a$の取りうる値の範囲は
\[ \sqrt{[ア]} \leqq a \leqq \sqrt{[イ][ウ]} \]
である.
(2)$(ⅰ)$ $\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{[エ][オ]}(-a^2+[カ][キ])$である.
$(ⅱ)$ $\displaystyle S^2=\frac{1}{[ク][ケ]}(-a^4+[コ][サ]a^2-[シ][ス])$である.
(3)$\mathrm{OA}=x$とおいて,$S^2$を$x$を用いて表すと
\[ S^2=-\frac{[セ]}{[ソ]}x^4+[タ] \]
となる.
(4)$S=2 \sqrt{2}$のとき,四面体$\mathrm{OABC}$に内接する球(すなわち,中心がこの四面体の内部にあって,すべての面と$1$点のみを共有する球)の半径を$r$とおく.

(i) $\displaystyle r=\frac{\sqrt{[チ]}}{1+[ツ] \sqrt{[テ]}+\sqrt{[ト][ナ]}}$である.

(ii) $r=[ニ] \sqrt{[チ]}-[ヌ] \sqrt{[テ]}+[ネ] \sqrt{[ト][ナ]}-[ノ]$となる.
立教大学 私立 立教大学 2014年 第1問
次の空欄$[ア]$~$[ス]$に当てはまる数または式を記入せよ.

(1)$x^2-y^2-z^2+2yz$を因数分解すると,$[ア]$となる.
(2)$\displaystyle \sin \theta-\cos \theta=\frac{1}{2}$のとき,$\sin \theta \cos \theta$の値は$[イ]$である.
(3)$3$次方程式$4x^3-23x+39=0$の解は,$x=[ウ]$,$[エ]$,$[オ]$である.
(4)関数$f(x)=4^x+4^{-x}-3(2^x+2^{-x})+2$の最小値は$[カ]$である.
(5)数列$1,\ 3,\ 6,\ 10,\ 15,\ 21,\ \cdots$の第$n$項を$n$の式で表すと$[キ]$である.
(6)$\displaystyle \frac{1}{2} \log_5 27,\ \log_{125}9,\ \log_5 \sqrt[4]{27}$のうち最大のものは$[ク]$であり,最小のものは$[ケ]$である.
(7)$2$次方程式$x^2+px+q=0$の$2$つの解を$\alpha,\ \beta$とする.$\alpha-\beta=-4$,$\alpha^3-\beta^3=-28$であるとき,$p=[コ]$または$[サ]$,$q=[シ]$である.
(8)$1$個のさいころを$2$回続けて投げるとき,$1$回目に出た目より大きい目が$2$回目に出る確率は$[ス]$である.
立教大学 私立 立教大学 2014年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)${1.6}^n>10000$を満たす最小の整数$n$の値は$[ア]$である.ただし,$\log_{10}2=0.3010$とする.
(2)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2-6x-2a+16$を満たすとき,定数$a$の値は$[イ]$である.
(3)$4$つのさいころを同時に投げたとき,すべてのさいころの目の数が異なる確率は$[ウ]$である.
(4)${(\sqrt{3})}^x=243 \times 3^{-2x}$を満たすとき,$x$の値は$[エ]$である.
(5)$2$つの直線$x+2y+3=0$と$3x+y-2=0$のなす角$\theta$は$[オ]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
(6)$1+\sqrt{3}i$が$2$次方程式$x^2+ax+b=0$の解となるとき,$a=[カ]$,$b=[キ]$である.ただし,$a,\ b$は実数であり,$i$は虚数単位とする.
(7)$2$次関数$y=-3x^2$のグラフを$x$軸方向に$1$,$y$軸方向に$2$だけ平行移動した放物線の方程式が$y=-3x^2+px+q$になる.このとき,$p=[ク]$,$q=[ケ]$である.
(8)$\mathrm{R},\ \mathrm{I},\ \mathrm{K},\ \mathrm{K},\ \mathrm{Y},\ \mathrm{O}$の$6$個の文字すべてを横一列に並べるとき,$\mathrm{R}$が$\mathrm{I}$より左側にあり,かつ$\mathrm{I}$が$\mathrm{Y}$より左側にあるような並べ方は$[コ]$通りである.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。