タグ「根号」の検索結果

78ページ目:全1904問中771問~780問を表示)
北里大学 私立 北里大学 2014年 第3問
次の文中の$[ア]$~$[フ]$にあてはまる最も適切な数を答えなさい.

曲線$C$を$y=x^2-6x+13$とし,曲線$C$の接線で点$(p,\ 0)$を通るものを考える.接点の$x$座標を$\alpha$とすると,接線の傾きは$[ア] \alpha+[イ]$,接点の座標は$(\alpha,\ [ウ] \alpha^2+[エ] \alpha+[オ][カ])$であるから,接線の方程式は,
\[ y=([ア] \alpha+[イ])x+[キ] \alpha^2+[ク] \alpha+[ケ][コ] \]
と表される.この直線が点$(p,\ 0)$を通ることから$\alpha$は次の$2$次方程式
\[ \alpha^2+[サ]p \alpha+[シ]p+[ス][セ]=0 \]
を満たす.この方程式は$2$つの解を持つから接線は$2$本存在し,傾きが正である接線の方程式は,
\[ y=[ソ] \left( p+[タ]+\sqrt{p^2+[チ]p+[ツ][テ]} \right) (x+[ト]p) \]
と表される.
任意の$x$における曲線$C$の$y$座標と接線の$y$座標の差は,両者が$x=\alpha$で接しているので,
\[ (x-\alpha)^2 \]
と書ける.これを用いると,曲線$C$と$2$本の接線で囲まれた部分の面積$S$は,
\[ S=\frac{[ナ]}{[ニ]} \left( p^2+[チ]p+[ツ][テ] \right)^{\frac{[ヌ]}{[ネ]}} \]
である.$p$を変化させるとき,$S$は$p=[ノ]$で最小値$\displaystyle \frac{[ハ][ヒ]}{[フ]}$をとる.
九州産業大学 私立 九州産業大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{\sqrt{5}+1}{2} \right)^3+\left( \frac{\sqrt{5}-1}{2} \right)^3=[ア] \sqrt{[イ]}$である.
(2)関数$y=-3x^2+6x (0 \leqq x \leqq 3)$の最大値は$[ウ]$で,最小値は$[エオ]$である.
(3)$2$次方程式$x^2-3x+3=0$の解は$\displaystyle x=\frac{[カ] \pm \sqrt{[キ]}i}{[ク]}$である.
(4)$\displaystyle \sin \theta \cos \theta=\frac{1}{2} (0 \leqq \theta \leqq {90}^\circ)$のとき

(i) $\displaystyle \sin \theta+\cos \theta=\sqrt{[ケ]}$である.
(ii) $\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{\sqrt{[コ]}}{[サ]}$である.

(5)正方形$\mathrm{ABCD}$の各辺に赤,青,黄,緑のいずれかの色を塗る.ただし,同じ色を$2$度以上使ってもよいものとする.

(i) 辺$\mathrm{AB}$と辺$\mathrm{BC}$が赤色になる塗り方は$[シス]$通りある.
(ii) $3$つの辺が赤色で,残りの$1$つの辺は赤色以外になる塗り方は$[セソ]$通りある.
(iii) 向かい合う辺は同じ色であるが,すべての辺が同じ色とはなっていない塗り方は$[タチ]$通りある.
九州産業大学 私立 九州産業大学 2014年 第2問
直線$-3x+y-5=0$を$\ell_1$,直線$x+3y-15=0$を$\ell_2$,直線$-x+2y-5=0$を$\ell_3$とする.また,直線$\ell_1$と直線$\ell_2$の交点を$\mathrm{A}$,直線$\ell_2$と直線$\ell_3$の交点を$\mathrm{B}$,直線$\ell_1$と直線$\ell_3$の交点を$\mathrm{C}$とし,点$\mathrm{A}$から線分$\mathrm{BC}$へ下ろした垂線を$\mathrm{AD}$とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$,点$\mathrm{C}$の座標は$([オカ],\ [キ])$である.
(2)垂線$\mathrm{AD}$の長さは$\sqrt{[ク]}$であり,点$\mathrm{D}$の座標は$([ケ],\ [コ])$である.
(3)$\triangle \mathrm{ABC}$の面積は$[サ]$である.
(4)$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[シス]}-\sqrt{[セ]}$である.
北海学園大学 私立 北海学園大学 2014年 第3問
対角線が$\mathrm{AC}$,$\mathrm{BD}$である平行四辺形$\mathrm{ABCD}$の面積は$8 \sqrt{15}$であり,三角形$\mathrm{ABD}$は鋭角三角形である.このとき,頂点$\mathrm{D}$から辺$\mathrm{AB}$に下ろした垂線を$\mathrm{DH}$とし,$\mathrm{AB}=8$,$\mathrm{AH}=x$,$\mathrm{BD}=y$とする.ただし,$x>0$,$y>0$とする.

(1)$1 \leqq x \leqq 7$のとき,$y$の値の範囲を求めよ.
(2)$x=1$のとき,三角形$\mathrm{ABD}$の内接円の面積$S$の値を求めよ.
(3)三角形$\mathrm{ABD}$の内接円と三角形$\mathrm{BCD}$の内接円が接するとき,$x$の値を求めよ.
東北学院大学 私立 東北学院大学 2014年 第1問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=2 \sqrt{6}$,$\mathrm{BC}=3$,$\angle \mathrm{BCA}=\theta$とする.$\displaystyle \cos \theta=\frac{1}{3}$であるとき,次の問いに答えよ.

(1)辺$\mathrm{CA}$の長さを求めよ.
(2)三角形$\mathrm{ABC}$の面積$S$を求めよ.
(3)三角形$\mathrm{ABC}$の外接円の半径$R$を求めよ.
(4)辺$\mathrm{AB}$の中点を$\mathrm{P}$とし,辺$\mathrm{CA}$上に$\mathrm{CQ}=3$となる点$\mathrm{Q}$をとる.線分$\mathrm{PQ}$の長さを求めよ.
東北学院大学 私立 東北学院大学 2014年 第5問
$\displaystyle \left( \sqrt{7}x^2+\frac{1}{49} \right)^{50}$の展開式について,次の問いに答えよ.

(1)$x^{96}$の係数を$a \times 7^b$の形に表せ.ただし,$a,\ b$は自然数とし,$a$は$7$の倍数でないとする.
(2)係数が自然数になる項の個数を求めよ.
九州産業大学 私立 九州産業大学 2014年 第4問
$4$点$\mathrm{A}(-\sqrt{3},\ \sqrt{3},\ 1)$,$\mathrm{B}(\sqrt{3},\ -\sqrt{3},\ 1)$,$\mathrm{C}(-3,\ -3,\ 1)$,$\mathrm{D}$を頂点とする四面体$\mathrm{ABCD}$について考える.ただし,点$\mathrm{D}$の$z$座標は負の数であり,$|\overrightarrow{\mathrm{AD}}|=|\overrightarrow{\mathrm{BD}}|=|\overrightarrow{\mathrm{CD}}|=\sqrt{17}$とする.また,原点を$\mathrm{O}$とする.

(1)$|\overrightarrow{\mathrm{AB}}|=[ア]$である.
(2)点$\mathrm{D}$の座標は$[イ]$である.
(3)点$\mathrm{A}$を通り,$z$軸に垂直な平面の方程式は$[ウ]$である.
(4)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面上にあり,点$\mathrm{D}$との距離が最小となる点の位置ベクトルを$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$で表すと$[エ]$である.
(5)四面体$\mathrm{ABCD}$の体積は$[オ]$である.
獨協医科大学 私立 獨協医科大学 2014年 第3問
空間に,同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,条件
\[ |\overrightarrow{\mathrm{OA}}|=2,\quad |\overrightarrow{\mathrm{OB}}|=1\,\quad \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-1 \]
を満たしている.$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面を$\alpha$とし,$\alpha$上にない点$\mathrm{P}$を次の条件を満たすようにとる.
\[ \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OA}}=2,\quad \overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OB}}=-1 \]
点$\mathrm{P}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$とすると
\[ \overrightarrow{\mathrm{OH}}=\frac{[ア]}{[イ]} \overrightarrow{\mathrm{OA}}-\frac{[ウ]}{[エ]} \overrightarrow{\mathrm{OB}} \]
となる.$|\overrightarrow{\mathrm{OP}}|=p$とおくと,$\triangle \mathrm{OPH}$の面積は
\[ \frac{[オ]}{[カ]} \sqrt{[キ]p^2-[ク]} \]
と表される.

$\triangle \mathrm{OAB}$の面積が$\triangle \mathrm{OPH}$の面積の$2$倍に等しいとき
\[ p^2=\frac{[ケコ]}{[サシ]} \]
である.またこのとき,$\displaystyle \overrightarrow{\mathrm{PQ}}=\frac{5}{3} \overrightarrow{\mathrm{PO}}$を満たす点$\mathrm{Q}$をとると,四面体$\mathrm{QOAH}$の体積は
\[ \frac{\sqrt{[ス]}}{[セソ]} \]
である.
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2014年 第1問
次の式を簡単にせよ.
\[ \frac{1}{1+\sqrt{2}-\sqrt{3}-\sqrt{6}}+\frac{1}{1-\sqrt{2}+\sqrt{3}-\sqrt{6}} \]
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。