タグ「根号」の検索結果

75ページ目:全1904問中741問~750問を表示)
早稲田大学 私立 早稲田大学 2014年 第5問
角$A$が鈍角の三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{AC}=3$であり,三角形$\mathrm{ABC}$の面積は$2 \sqrt{2}$である.このとき,三角形$\mathrm{ABC}$の垂心を$\mathrm{H}$とすると
\[ \overrightarrow{\mathrm{AH}}=\frac{[ナ] \overrightarrow{\mathrm{AB}}+[ニ] \overrightarrow{\mathrm{AC}}}{[ヌ]} \]
である.
早稲田大学 私立 早稲田大学 2014年 第1問
$\displaystyle \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$の小数部分を$a$とするとき,$a$は$2$次方程式$x^2+[ア]x+[イ]=0$の解であり,$a^3+6a^2-21a+23$の値は$[ウ]+[エ] \sqrt{[オ]}$である.
早稲田大学 私立 早稲田大学 2014年 第2問
$1$辺の長さが$1$である正六角形の$6$つの頂点から$3$つの頂点を選び三角形を作る.

(1)この三角形が正三角形になる確率は$\displaystyle \frac{[カ]}{[キ]}$である.
(2)このようにして作られるすべての三角形の面積の期待値は$\displaystyle \frac{[ク] \sqrt{[ケ]}}{[コ]}$である.
早稲田大学 私立 早稲田大学 2014年 第1問
複素数$\displaystyle\alpha=\frac{-1+\sqrt{3}i}{2}$に対して,
\[ S_n=\sum_{k=1}^n \alpha^{k-1},\quad T_n=\sum_{k=1}^n k \alpha^{k-1} \quad (n=1,\ 2,\ \cdots) \]
とおく.ただし,$\alpha^0=1$とする.次の問に答えよ.

(1)$S_{3m} (m=1,\ 2,\ \cdots)$を求めよ.
(2)$T_{3m} (m=1,\ 2,\ \cdots)$を求めよ.
(3)$T_{2014}$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
$0 \leqq x \leqq 8$とする.

(1)不等式
\[ \sin \left( \frac{\pi}{12}x \right)+\cos \left( \frac{\pi}{12}x \right) \leqq \frac{\sqrt{6}}{2} \]
を満たす$x$の範囲は
\[ 0 \leqq x \leqq [ア] \quad \text{および} \quad [イ] \leqq x \leqq 8 \cdots\cdots (*) \]
である.
(2)$x$が$(*)$の範囲を動くとき,関数
\[ f(x)=|x(x-5)(x-8)| \]
は$x=[ウ]$のとき最大値$[エ]$をとる.
京都女子大学 私立 京都女子大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle a=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}},\ b=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}$のとき,$a^2+4ab+b^2$および$a^3+2a^2b+2ab^2+b^3$の値を求めよ.
(2)不等式$3-2x \leqq |3x-2|<10+x$を解け.
(3)数直線上の集合$A=\{x | -a-1<x<a^2\},\ B=\{x | -2 \leqq x \leqq 3\}$において,$A \subset B$となるような$a$の値の範囲を求めよ.
神奈川大学 私立 神奈川大学 2014年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)$2$次方程式$x^2-2x+2=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\beta}{\alpha}+\frac{\alpha}{\beta}$の値は$[$(\mathrm{a])$}$である.
(2)$\overrightarrow{\mathrm{0}}$でない$2$つのベクトル$\overrightarrow{a}$と$\overrightarrow{b}$は,なす角が${60}^\circ$で,$|\overrightarrow{a}|=2 |\overrightarrow{b}|$である.$\overrightarrow{a}+\overrightarrow{b}$と$2 \overrightarrow{a}+t \overrightarrow{b}$が垂直であるとき,$t$の値は$[$(\mathrm{b])$}$である.
(3)$a^x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle \frac{a^{3x}-a^{-3x}}{a^x-a^{-x}}$の値は$[$(\mathrm{c])$}$である.
(4)円$x^2+y^2-2x-4y-4=0$上の点$\mathrm{A}$と,円$x^2+y^2-12x-14y+81=0$上の点$\mathrm{B}$について,$\mathrm{A}$と$\mathrm{B}$の距離の最小値は$[$(\mathrm{d])$}$である.
(5)$6$枚のコインを同時に投げるとき,ちょうど$3$枚のコインが表になる確率は$[$(\mathrm{e])$}$である.
(6)定数$a,\ b$に対して,$\displaystyle \lim_{x \to a} \frac{x^2-b}{x-a}=6$が成り立つとする.このとき,$a=[($\mathrm{f])$}$,$b=[$(\mathrm{g])$}$である.
昭和大学 私立 昭和大学 2014年 第1問
次の各問に答えよ.

(1)$(1$-$1)$ 連立不等式$600<2^{x+2}-2^x<900$を満たす自然数$x$を求めよ.
$(1$-$2)$ 連立不等式$21<\log_2 x^6<22$を満たす自然数$x$を求めよ.
(2)$(2$-$1)$ $0 \leqq x \leqq \pi$のとき,方程式$\sqrt{3} \sin x-\cos x=a$が相異なる$2$つの解をもつような定数$a$の値の範囲を求めよ.
$(2$-$2)$ $2$次方程式$\sqrt{3}x^2+2x-\sqrt{3}=0$の$2$つの解を$\tan \alpha$,$\tan \beta$とするとき,$\alpha+\beta$の値を求めよ.ただし,$0<\alpha+\beta<\pi$とする.
(3)三角形$\mathrm{OAB}$において$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\angle \mathrm{AOB}={120}^\circ$とし,点$\mathrm{O}$から辺$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$,辺$\mathrm{OB}$の中点を$\mathrm{M}$,線分$\mathrm{OH}$と線分$\mathrm{AM}$の交点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくとき,次の問に答えよ.
$(3$-$1)$ $\mathrm{AH}:\mathrm{HB}$を求めよ.
$(3$-$2)$ $\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
大同大学 私立 大同大学 2014年 第1問
次の$[ア]$から$[ネ]$までの$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.

(1)$36+2 \sqrt{155}={(\sqrt{[ア][イ]}+\sqrt{[ウ]})}^2$であり,
\[ \frac{1}{\sqrt{36+2 \sqrt{155}}}+\frac{1}{\sqrt{36-2 \sqrt{155}}}=\frac{\sqrt{[エ][オ]}}{[カ][キ]} \]
である.
(2)放物線$y=4x^2-4kx+5k^2+19k-4$が$x$軸の負の部分および正の部分と交わるような$k$の範囲は$\displaystyle -[ク]<k<\frac{[ケ]}{[コ]}$である.この範囲で$k$が動くとき,放物線$y=4x^2-4kx+5k^2+19k-4$が切り取る$x$軸上の線分の長さの最大値は$\displaystyle \frac{[サ] \sqrt{[シ][ス]}}{[セ]}$である.
(3)$3$桁の整数で$3$の倍数は,全部で$[ソ][タ][チ]$個ある.$3$桁の整数で各位の数の和が$k$であるものの個数を$n(k)$とする(たとえば,$3$桁の整数で各位の数の和が$2$であるものは$101$,$110$,$200$の$3$個であるから,$n(2)=3$である).このとき,$n(3)=[ツ]$,$n(27)=[テ]$,$n(24)=[ト][ナ]$であり,$n(6)+n(9)+n(12)+n(15)+n(18)+n(21)=[ニ][ヌ][ネ]$である.
大同大学 私立 大同大学 2014年 第2問
次の$[ノ]$から$[レ]$までの$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.

(1)$\mathrm{A}(-1,\ -2)$,$\mathrm{B}(3,\ 4)$とする.$\triangle \mathrm{ABC}$が$\angle \mathrm{C}={90}^\circ$の直角三角形のとき,点$\mathrm{C}$は円$x^2+y^2-[ノ]x-[ハ]y-[ヒ][フ]=0$上にある.さらに$\triangle \mathrm{ABC}$の面積が最大となる点$\mathrm{C}$の座標は$([ヘ],\ -[ホ])$または$(-[マ],\ [ミ])$である.
(2)$\sin x=t$とおくとき,$2 \sin 2x \cos x-(8+3 \cos 2x) \sin x-2=[ム] t^3-[メ] t-[モ]=(t-[ヤ])([ユ] t^2+[ヨ] t+[ラ])$である.
$2 \sin 2x \cos x-(8+3 \cos 2x) \sin x-2=0$のとき,$\displaystyle \sin x=\frac{-[リ]+\sqrt{[ル]}}{[レ]}$である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。