タグ「根号」の検索結果

66ページ目:全1904問中651問~660問を表示)
福井大学 国立 福井大学 2014年 第4問
以下の問いに答えよ.

(1)$p>1$,$q>1$のとき,不等式$p+q<pq+1$を証明せよ.
(2)$a>1$,$b>1$のとき,不等式$\sqrt{a+b-1}<\sqrt{a}+\sqrt{b}-1$を証明せよ.
(3)$a>1$,$b>1$,$c>1$のとき,不等式$\sqrt{a+b+c-2}<\sqrt{a}+\sqrt{b}+\sqrt{c}-2$を証明せよ.
浜松医科大学 国立 浜松医科大学 2014年 第1問
$p$を正の実数として,放物線$C:y^2=4px$を定める.$C$の頂点を$\mathrm{O}$,焦点を$\mathrm{F}$,準線を$\ell:x=-p$とする.$C$上の$2$点$\mathrm{A}(a,\ 2 \sqrt{pa}) (a>0)$と$\mathrm{B}(b,\ -2 \sqrt{pb}) (b>0)$を考えるとき,以下の問いに答えよ.

(1)$\mathrm{A}$における$C$の接線を$\ell (\mathrm{A})$とし,$\ell(\mathrm{A})$と準線$\ell$との交点を$\mathrm{P}$とする.$\ell(\mathrm{A})$の方程式をかいて,$\mathrm{P}$の座標を求めよ.また,線分$\mathrm{AP}$の長さは線分$\mathrm{AF}$の長さより大きいことを示せ.
(2)接線$\ell(\mathrm{A})$が直線$\mathrm{AB}$と$\mathrm{A}$において直交するとき,$b$を$a,\ p$を用いて表せ.また$a$が$0<a<\infty$の範囲内を動くとき,$b$の最小値を求めよ.

以下$(2)$の最小値を実現する$C$上の$2$点を$\mathrm{A}_0$,$\mathrm{B}_0$とし,接線$\ell(\mathrm{A}_0)$と準線$\ell$の交点を$\mathrm{P}_0$とする.

(3)直線$\mathrm{OA}_0$と直線$\mathrm{P}_0 \mathrm{B}_0$は$\mathrm{O}$において直交することを示せ.
(4)$\triangle \mathrm{A}_0 \mathrm{OB}_0$の面積を$S$,線分$\mathrm{A}_0 \mathrm{B}_0$と$C$で囲まれた図形の面積を$T$とするとき,比$S:T$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第2問
関数$\displaystyle f(x)=\frac{3 \sqrt{3}}{\sin x}-\frac{1}{\cos x} \left( 0<|x|<\frac{\pi}{2} \right)$を考える.以下の問いに答えよ.

(1)$y=f(x)$の増減表を作成し,極値を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$は,$3$次式$P(t)=t(2t^2-1)$を用いて,
\[ f^{\prime\prime}(x)=3 \sqrt{3} P \left( \frac{1}{\sin x} \right)-P \left( \frac{1}{\cos x} \right) \]
と表されることを示せ.また,$\displaystyle 0<x_1<x_2<\frac{\pi}{2}$のとき$f^{\prime\prime}(x_1)>f^{\prime\prime}(x_2)$となることを示せ.
(3)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解は何個あるか.$k$の値によって分類せよ.
(4)$y=f(x)$の変曲点はただ$1$つ存在することを示せ.また,この変曲点が第何象限にあるか,調べよ.
山形大学 国立 山形大学 2014年 第2問
三角形$\mathrm{ABC}$の各辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$1:2$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{AQ}$と$\mathrm{CP}$の交点を$\mathrm{S}$,$\mathrm{BR}$と$\mathrm{AQ}$の交点を$\mathrm{T}$,$\mathrm{CP}$と$\mathrm{BR}$の交点を$\mathrm{U}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{Q}$を通り辺$\mathrm{AC}$と平行な直線と,$\mathrm{BR}$の交点を$\mathrm{V}$とするとき,$\overrightarrow{\mathrm{VQ}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AT}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\overrightarrow{\mathrm{AS}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(5)$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\angle \mathrm{BAC}={90}^\circ$であるとき,$|\overrightarrow{\mathrm{ST}}|$,$|\overrightarrow{\mathrm{SU}}|$,$\angle \mathrm{TSU}$および三角形$\mathrm{STU}$の面積を求めよ.
和歌山大学 国立 和歌山大学 2014年 第1問
数列$\{a_n\}$,$\{b_n\}$が,$a_n=\sqrt{2n+1}-\sqrt{2n-1}$,$\displaystyle b_n=\frac{1}{\sqrt{2n-1}}$で定められている.このとき,次の問いに答えよ.

(1)$n \geqq 1$に対して,$b_{n+1}<a_n<b_n$が成り立つことを示せ.
(2)$\displaystyle 8<\sum_{k=1}^{40} b_k<9$が成り立つことを示せ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2014年 第3問
$a_1=2$とし,$f(x)=x^2-3$とする.曲線$y=f(x)$上の点$(a_1,\ f(a_1))$における接線が$x$軸と交わる点の$x$座標を$a_2$とする.以下同様に,$n=3,\ 4,\ \cdots$に対して,曲線$y=f(x)$上の点$(a_{n-1},\ f(a_{n-1}))$における接線が$x$軸と交わる点の$x$座標を$a_n$とする.数列$\{a_n\}$に対して,次の問いに答えよ.

(1)$a_2$を求めよ.
(2)$a_{n+1}$を$a_n$を用いて表せ.
(3)$a_n \geqq \sqrt{3}$を示せ.
(4)$\displaystyle a_n-\sqrt{3} \leqq {\left( \frac{1}{2} \right)}^{n-1} (2-\sqrt{3})$を示し,$\displaystyle \lim_{n \to \infty} a_n$を求めよ.
島根大学 国立 島根大学 2014年 第2問
$\displaystyle f(x)=\frac{8x}{\sqrt{x^2+1}}$とするとき,次の問いに答えよ.

(1)関数$y=f(x)$の凹凸と漸近線を調べて,そのグラフの概形をかけ.
(2)$k$を正の定数とする.関数$y=f(x)$のグラフと直線$y=x+k$がちょうど$2$個の共有点をもつとき,$k$の値を求めよ.
(3)$k$を$(2)$で求めた定数とする.このとき,$x \geqq 0$の範囲で,関数$y=f(x)$のグラフと直線$y=x+k$および$y$軸で囲まれた図形の面積$S$を求めよ.
山口大学 国立 山口大学 2014年 第3問
四面体$\mathrm{ABCD}$において,
\[ \mathrm{AB}=\mathrm{AC}=\mathrm{AD}=1,\quad \mathrm{BC}=\sqrt{3},\quad \angle \mathrm{BDC}=\theta \]
のとき,次の問いに答えなさい.ただし,$\displaystyle \frac{\pi}{3}<\theta<\frac{\pi}{2}$とする.

(1)点$\mathrm{A}$から$\triangle \mathrm{BCD}$を含む平面に垂線を下ろし,その平面との交点を$\mathrm{H}$とする.線分$\mathrm{AH}$,$\mathrm{BH}$,$\mathrm{CH}$,$\mathrm{DH}$の長さを,それぞれ$\theta$を用いて表しなさい.
(2)$t=\cos \theta$とする.$\theta$を一定の値に保ったまま点$\mathrm{D}$が動くときの四面体$\mathrm{ABCD}$の体積の最大値を,$t$を用いて表しなさい.
(3)$(2)$で求めた四面体$\mathrm{ABCD}$の体積の最大値を$V(t)$とする.$\displaystyle \frac{\pi}{3}<\theta<\frac{\pi}{2}$の範囲で$\theta$が動くときの$V(t)$の最大値を求めなさい.ただし,$V(t)$が最大値をとるときの$\theta$の値は求めなくてよい.
山口大学 国立 山口大学 2014年 第3問
次の問いに答えなさい.

(1)$2$つの整数$a,\ b$が$1+\sqrt{2}=a+b \sqrt{2}$を満たすならば,$a=b=1$であることを示しなさい.ただし,$\sqrt{2}$が無理数であることは示さなくてよい.
(2)$k$を自然数とする.$2$つの整数$a,\ b$が$(1+\sqrt{2})^{k+1}=a+b \sqrt{2}$を満たしているとき,$(1+\sqrt{2})^k=a^\prime+b^\prime \sqrt{2}$を満たす整数$a^\prime,\ b^\prime$を$a,\ b$を用いて表しなさい.
(3)すべての自然数$n$に対して,
命題「$2$つの整数$a,\ b$が$(1+\sqrt{2})^n=a+b \sqrt{2}$を満たしているならば,$(1-\sqrt{2})^n=a-b \sqrt{2}$である」
が成り立つことを数学的帰納法を用いて示しなさい.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。