タグ「根号」の検索結果

63ページ目:全1904問中621問~630問を表示)
琉球大学 国立 琉球大学 2014年 第3問
整数$m,\ n$は$m \geqq 1$,$n \geqq 2$をみたすとする.次の問いに答えよ.

(1)$x>0$のとき,$y=\log x$の第$1$次導関数$y^\prime$と第$2$次導関数$y^{\prime\prime}$を求めよ.
(2)座標平面上の$3$点$\mathrm{A}(m,\ \log m)$,$\mathrm{B}(m+1,\ \log m)$,$\mathrm{C}(m+1,\ \log (m+1))$を頂点とする三角形の面積を$S_m$とする.$S_m$を$m$を用いて表せ.
(3)$\displaystyle f(m)=\log m+S_m-\int_m^{m+1} \log x \, dx$とおく.$f(m)<0$が成り立つことを,$y=\log x$のグラフを用いて説明せよ.
(4)$f(1)+f(2)+\cdots +f(n-1)<0$であることを用いて,不等式
\[ \log 1+\log 2+\cdots +\log (n-1)<n \log n-n+1-\frac{1}{2} \log n \]
を証明せよ.
(5)不等式$\displaystyle n!<e \sqrt{n} \left( \frac{n}{e} \right)^n$を証明せよ.ただし,$e$は自然対数の底である.
滋賀医科大学 国立 滋賀医科大学 2014年 第4問
関数$f(x)$は導関数$f^\prime(x)$および第$2$次導関数$f^{\prime\prime}(x)$をもち,区間$0 \leqq x \leqq 1$において,
\[ f(x)>0,\quad \{f^\prime(x)\}^2 \leqq f(x)f^{\prime\prime}(x) \leqq 2 \{f^\prime(x)\}^2 \]
を満たしている.$f(0)=a$,$f(1)=b$とするとき,次の不等式を示せ.

(1)$\displaystyle f \left( \frac{1}{2} \right) \leqq \frac{a+b}{2}$

(2)$\displaystyle f \left( \frac{1}{3} \right) \leqq \sqrt[3]{a^2b}$

(3)$\displaystyle f \left( \frac{1}{4} \right) \geqq \frac{4ab}{a+3b}$

(4)$\displaystyle \int_0^1 f(x) \, dx \leqq \frac{1}{4}a+\frac{1}{2} \sqrt{ab}+\frac{1}{4}b$
愛知教育大学 国立 愛知教育大学 2014年 第4問
座標平面上に点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{C}(1,\ \sqrt{3})$を頂点とする正三角形$\mathrm{ABC}$をとる.また,点$(-1,\ 0)$,$(0,\ 0)$,$\displaystyle \left( -\frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$を頂点とする正三角形を$x$軸の正の方向に$t$だけ平行移動して得られる正三角形$\mathrm{PQR}$を考える.ただし,$t$は$0$以上の実数とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{PQR}$の共通部分の面積を$f(t)$とするとき,関数$y=f(t)$のグラフの概形を描け.
(2)曲線$y=f(t)$と$t$軸で囲まれた部分の面積を求めよ.
富山大学 国立 富山大学 2014年 第1問
次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示せ.
(2)$f(x)=x^2 \log x (x>0)$とおく.$\displaystyle \lim_{x \to +0}f(x)=0$を示せ.
(3)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(4)$\displaystyle I(t)=\int_t^2 f(x) \, dx (t>0)$とおく.このとき,$\displaystyle \lim_{t \to +0}I(t)$を求めよ.
九州工業大学 国立 九州工業大学 2014年 第1問
空間において$1$点$\mathrm{O}$を固定し,$\mathrm{O}$に関する位置ベクトルが$\overrightarrow{p}$である点$\mathrm{P}$を$\mathrm{P}(\overrightarrow{p})$で表す.$4$点$\mathrm{O}$,$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$,$\mathrm{C}(\overrightarrow{c})$を頂点とする四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{BC}$を$s:1-s (0<s<1)$に内分する点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とし,$\displaystyle \overrightarrow{h}=\overrightarrow{a}-\frac{9}{16} \overrightarrow{b}+\frac{9}{16} \overrightarrow{c}$を位置ベクトルとする平面$\alpha$上の点を$\mathrm{H}(\overrightarrow{h})$とする.$\mathrm{OA}=\mathrm{AB}=3$,$\mathrm{OB}=3 \sqrt{2}$,$\mathrm{OC}=\mathrm{BC}=4$,$\mathrm{AC}=5$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{DE}}$,$\overrightarrow{\mathrm{DF}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$s$を用いて表せ.また,内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分$\mathrm{OH}$の長さを求めよ.
(3)$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の定める平面が点$\mathrm{H}$を通るときの$s$の値を求めよ.
(4)$s$を$(3)$で求めた値とするとき,四面体$\mathrm{OAFC}$の体積$V$を求めよ.
大阪教育大学 国立 大阪教育大学 2014年 第3問
曲線$\displaystyle y=\frac{x^2}{x^2+3}$を$C$とし,座標平面上の原点を$\mathrm{O}$とする.以下の問に答えよ.

(1)曲線$C$の凹凸,変曲点,漸近線を調べ,その概形をかけ.
(2)曲線$C$の接線で原点を通るものをすべて求めよ.また,その接点を求めよ.
(3)$\mathrm{P}$を原点を中心とする半径$\displaystyle \frac{\sqrt{17}}{4}$の円周上の点とする.点$\mathrm{P}$を点$\displaystyle \mathrm{A} \left( 0,\ \frac{\sqrt{17}}{4} \right)$から時計回りに動かすとき,原点以外に線分$\mathrm{OP}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
(4)$\mathrm{Q}$を原点を中心とする半径$2$の円周上の点とする.点$\mathrm{Q}$を点$\mathrm{B}(0,\ 2)$から時計回りに動かすとき,原点以外に線分$\mathrm{OQ}$が初めて曲線$C$と共有点をもつとき,その座標を求めよ.
岐阜大学 国立 岐阜大学 2014年 第4問
次の問に答えよ.

(1)$a,\ b>0$とする.このとき
\[ \frac{a+b}{2} \geqq \sqrt{ab} \]
であることを証明せよ.また,等号が成立するのは$a=b$の場合だけであることを示せ.
(2)$a,\ b,\ c>0$とする.このとき
\[ (a+b)(b+c)(c+a) \geqq 8abc \]
であることを証明せよ.また,等号が成立するのはどのような場合か述べよ.
(3)$\alpha,\ \beta,\ \gamma$を三角形の$3$辺の長さとする.このとき
\[ \alpha\beta\gamma \geqq (-\alpha+\beta+\gamma)(\alpha-\beta+\gamma)(\alpha+\beta-\gamma) \]
であることを証明せよ.また,等号が成立するのは正三角形の場合だけであることを示せ.
(4)$\alpha,\ \beta,\ \gamma$を三角形の$3$辺の長さとする.このとき
\[ \frac{\alpha}{-\alpha+\beta+\gamma}+\frac{\beta}{\alpha-\beta+\gamma}+\frac{\gamma}{\alpha+\beta-\gamma} \geqq 3 \]
であることを証明せよ.また,等号が成立するのは正三角形の場合だけであることを示せ.
富山大学 国立 富山大学 2014年 第3問
次の問いに答えよ.

(1)$x>0$のとき,不等式$\displaystyle \log x>-\frac{1}{\sqrt{x}}$が成り立つことを示せ.
(2)$f(x)=x^2 \log x (x>0)$とおく.$\displaystyle \lim_{x \to +0}f(x)=0$を示せ.
(3)$f(x)$の増減および凹凸を調べ,$y=f(x)$のグラフの概形をかけ.
(4)$\displaystyle I(t)=\int_t^2 f(x) \, dx (t>0)$とおく.このとき,$\displaystyle \lim_{t \to +0}I(t)$を求めよ.
大分大学 国立 大分大学 2014年 第2問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
大分大学 国立 大分大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$2 \sqrt{2}$の球面$S$上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=4,\quad \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=5,\quad \overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=6 \]
をみたしている.三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{OG}$と球面$S$の交点のうち$\mathrm{G}$から遠い方を$\mathrm{P}$とする.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OG}}|$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$を用いて表しなさい.
(3)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OP}}$のなす角を求めなさい.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。