タグ「根号」の検索結果

48ページ目:全1904問中471問~480問を表示)
東京電機大学 私立 東京電機大学 2015年 第1問
次の各問に答えよ.

(1)方程式$11+\log_2 x=\log_2 (33x+1)$を解け.
(2)$0 \leqq x \leqq 2\pi$のとき,不等式$\cos 2x+3 \sin x-2 \geqq 0$を解け.
(3)$3$次式$f(x)$は$x^3$の係数が$1$であり,しかも$f(1)=f(2)=f(6)=12$をみたしている.方程式$f(x)=0$を解け.

(4)極限値$\displaystyle \lim_{x \to 0} \frac{\sin 5x-\sin x}{\sin 5x+\sin x}$を求めよ.

(5)定積分$\displaystyle \int_1^e \frac{\log x}{\sqrt{x}} \, dx$を求めよ.
津田塾大学 私立 津田塾大学 2015年 第3問
正方形$\mathrm{ABCD}$を底面とし,頂点を$\mathrm{O}$とする四角錐$\mathrm{OABCD}$を考える.正方形$\mathrm{ABCD}$の$1$辺の長さは$2$で,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=\sqrt{3}$とする.また,$\mathrm{A}$から$\mathrm{OB}$に下ろした垂線を$\mathrm{AM}$とする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積,および$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$の内積を求めよ.
(2)$\angle \mathrm{AMC}=\theta (0<\theta<\pi)$の値を求めよ.
北海道薬科大学 私立 北海道薬科大学 2015年 第1問
次の各設問に答えよ.

(1)循環小数の差$3. \dot{7} 4 \dot{5}-3. \dot{4}4 \dot{9}$を分数で表すと$\displaystyle \frac{[ア]}{[イウ]}$である.
(2)$\displaystyle \left( \frac{1}{2-\sqrt{3}} \right)^2$の小数部分は$x^2+[エオ]x+[カキク]=0$の解である.
(3)$\displaystyle \log_9 \frac{45}{7}+\log_3 \sqrt{10.5}+\log_9 3.6$を簡単にすると$\displaystyle \frac{[ケ]}{[コ]}$となる.
(4)${16}^x-3 \cdot 2^{2x+1}-16=0$を満たす$x$の値は$\displaystyle \frac{[サ]}{[シ]}$である.
北海道薬科大学 私立 北海道薬科大学 2015年 第3問
$\displaystyle \sin \theta-\cos \theta=\frac{1}{3} \left( 0<\theta<\frac{3}{4} \pi \right)$であるとする.

(1)$\sin \theta \cos \theta$の値は$\displaystyle \frac{[ア]}{[イ]}$である.

(2)$\displaystyle \sin^3 \theta-\cos^3 \theta=\frac{[ウエ]}{[オカ]}$,$\displaystyle \sin^3 \theta+\cos^3 \theta=\frac{[キ] \sqrt{[クケ]}}{[コサ]}$である.

(3)$\displaystyle \tan \theta=\frac{[シ]+\sqrt{[スセ]}}{[ソ]}$である.
東京女子大学 私立 東京女子大学 2015年 第4問
空間のベクトル$\overrightarrow{n}=(1,\ -1,\ 1)$,$\overrightarrow{a}=(\sqrt{2},\ -2 \sqrt{2},\ 0)$に対し,以下の設問に答えよ.

(1)$\overrightarrow{n} \cdot \overrightarrow{b}=0$,$\overrightarrow{a} \cdot \overrightarrow{b}=0$,$|\overrightarrow{b}|=1$をみたすベクトル$\overrightarrow{b}$を$1$つ求めよ.
(2)$(1)$で求めた$\overrightarrow{b}$に対し,$\overrightarrow{n} \cdot \overrightarrow{c}=0$,$\overrightarrow{b} \cdot \overrightarrow{c}=0$,$|\overrightarrow{c}|=1$をみたすベクトル$\overrightarrow{c}$を$1$つ求めよ.
(3)$s,\ t$を実数とし,$(1)$と$(2)$で求めた$\overrightarrow{b}$と$\overrightarrow{c}$を用いて$\overrightarrow{p}=s \overrightarrow{b}+t \overrightarrow{c}$とおく.$|\overrightarrow{p}|=1$であるとき,$|\overrightarrow{p}-\overrightarrow{a}|$の最小値を求めよ.また,そのときの$\overrightarrow{p}$を求めよ.
神戸薬科大学 私立 神戸薬科大学 2015年 第5問
一直線上にない$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$があった.$\overrightarrow{\mathrm{AB}}=(1,\ 2,\ 0)$,$\overrightarrow{\mathrm{AC}}=(-1,\ 0,\ 2)$のとき,この$2$つのベクトルに垂直で大きさが$\sqrt{6}$であるベクトル$\overrightarrow{p}$をすべて求めると,$\overrightarrow{p}=[ソ]$である.平面$\alpha$が点$(0,\ 1,\ 2)$を通るとき,原点$\mathrm{O}$から平面$\alpha$におろした垂線$\mathrm{OH}$の長さを求めると,$\mathrm{OH}=[タ]$である.
神戸薬科大学 私立 神戸薬科大学 2015年 第6問
$x>2$のとき$\sqrt{x^2-4x+4}-\sqrt{x^2+2x+1}$を簡単にすると$[チ]$であり,$-1<x<2$のとき$[ツ]$である.
名城大学 私立 名城大学 2015年 第1問
次の問について,答えを$[ ]$内に記入せよ.

(1)点$\mathrm{P}(x,\ y)$が原点$\mathrm{O}$を中心とする半径$\sqrt{2}$の円周上を動くとき,$\sqrt{3}x+y$の最小値は$[ア]$であり,$x^2+2xy+3y^2$の最大値は$[イ]$である.
(2)放物線$y=x^2$上に$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(-4,\ 16)$,$\mathrm{C}(2,\ 4)$がある.$a>0$かつ$\mathrm{AB}=\mathrm{AC}$であるとき,$a=[ウ]$であり,$\triangle \mathrm{ABC}$の面積は$[エ]$である.
東北学院大学 私立 東北学院大学 2015年 第2問
$\sqrt{14}$の整数部分を$a$,小数部分を$b$とするとき,次の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$\displaystyle \frac{1}{b}$の整数部分を$c$,小数部分を$d$とするとき,$c,\ d$の値を求めよ.
東京医科大学 私立 東京医科大学 2015年 第2問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^1 {\left( x \sqrt{1-x^2} \right)}^3 \, dx=\frac{[ア]}{[イウ]}$である.
(2)座標平面における曲線$\displaystyle C:y=\frac{4}{3}x+\frac{2}{3} \sqrt{x} (x>0)$上に点$\mathrm{P}$をとり,原点$\mathrm{O}$と点$\mathrm{P}$とを結ぶ線分$\mathrm{OP}$を考える.線分$\mathrm{OP}$と曲線$C$により囲まれた図形の面積を$A$とし,線分$\mathrm{OP}$を一辺とする正方形の面積を$S$とする.点$\mathrm{P}$が曲線$C$上を動くとき,面積比$\displaystyle \frac{A}{S}$のとり得る最大値を$M$とすれば$\displaystyle M=\frac{[エ]}{[オカ]}$である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。