タグ「根号」の検索結果

45ページ目:全1904問中441問~450問を表示)
金沢工業大学 私立 金沢工業大学 2015年 第2問
次の問いに答えよ.

(1)実数$x$について,等式
\[ \sin x-\sqrt{3} \cos x=[ス] \sin \left( x-\frac{\pi}{[セ]} \right) \]
が成り立つ.
(2)$0 \leqq x<2\pi$を満たす実数$x$について,無限等比級数
\[ 1+(\sin x-\sqrt{3} \cos x)+{(\sin x-\sqrt{3} \cos x)}^2+{(\sin x-\sqrt{3} \cos x)}^3+\cdots \]
は$\displaystyle \frac{\pi}{[ソ]}<x<\frac{\pi}{[タ]},\ \frac{[チ]}{[ツ]} \pi<x<\frac{[テ]}{[ト]} \pi$で収束し,その和は
\[ \frac{1}{1-[ナ] \sin \left( x-\displaystyle\frac{\pi}{[ニ]} \right)} \]
である.
金沢工業大学 私立 金沢工業大学 2015年 第4問
半径が$1$の球に内接する直円柱を考え,この直円柱の底面の半径を$x$とし,体積を$V$とする.

(1)$V=[ケ] \pi x^2 \sqrt{[コ]-x^2}$である.

(2)$\displaystyle \frac{dV}{dx}=\frac{[サ] \pi x(2-[シ]x^2)}{\sqrt{[ス]-x^2}}$である.

(3)$V$が最大になるのは$\displaystyle x=\frac{\sqrt{[セ]}}{[ソ]}$のときであり,その最大値は$\displaystyle \frac{[タ] \sqrt{[チ]}}{[ツ]} \pi$である.
北里大学 私立 北里大学 2015年 第2問
$k$は定数とする.楕円$\displaystyle \frac{x^2}{4}+y^2=1$と直線$x+\sqrt{3}=ky$の共有点を$\mathrm{P}$,$\mathrm{P}^\prime$とする.また楕円の$2$つの焦点を$\mathrm{F}(\sqrt{3},\ 0)$,$\mathrm{F}^\prime (-\sqrt{3},\ 0)$とする.

(1)$\triangle \mathrm{PP}^\prime \mathrm{F}$の面積を$k$を用いて表せ.
(2)$\triangle \mathrm{PP}^\prime \mathrm{F}$の内接円の半径を最大にする$k$の値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
学習院大学 私立 学習院大学 2015年 第1問
$4$つの実数
\[ \log_3 5,\quad \log_5 3,\quad \sin {350}^\circ,\quad \sqrt{\frac{3}{5}} \]
を小さいものから順に並べよ.ただし,必要ならば,$\log_{10}2=0.30$,$\log_{10}3=0.48$としてよい.
龍谷大学 私立 龍谷大学 2015年 第1問
次の問いに答えなさい.

(1)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$が,$\overrightarrow{a} \cdot \overrightarrow{a}=4$,$\overrightarrow{a} \cdot \overrightarrow{b}=-5$,$\overrightarrow{b} \cdot \overrightarrow{b}=9$を満たすとき,
\[ {|\abs{\overrightarrow{b|} \overrightarrow{a}+|\overrightarrow{a|} \overrightarrow{b}}}^2 \]
の値を求めなさい.
(2)直線$y=kx-k^2$が$k$の値によらず放物線$y=ax^2$に接するとき,$a$の値を求めなさい.
(3)曲線$y=(1-\sqrt{x})^2$と$x$軸および$y$軸で囲まれた図形の面積を求めなさい.
中央大学 私立 中央大学 2015年 第1問
次の各問いに答えよ.

(1)$\displaystyle x=\frac{1-\sqrt{3}}{2}$のとき,$\displaystyle x^2+\frac{1}{x^2}$の値を求めよ.ただし,分母は有理化して答えよ.
(2)初項から第$3$項までの和が$-63$,初項から第$6$項までの和が$-4095$である等比数列の初項と公比を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を$1$回ずつ使って$5$桁の数を作る.このとき,$31402$は小さい方から数えて何番目の数か.
(4)次の方程式を解け.
\[ 2 \log_2 x=\log_2 (x+4)+1 \]
(5)直線$y=3x+a$は曲線$y=x^3$に点$\mathrm{A}$で接する.ただし,$a>0$とする.原点を$\mathrm{O}$とし,直線と曲線の接点以外の共有点を$\mathrm{B}$とするとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(6)定積分$\displaystyle \int_{-1}^2 |x-1| \, dx$の値を求めよ.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
獨協大学 私立 獨協大学 2015年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$a$を正の定数とするとき,方程式$x^2-y^2+ax-y+2=0$が$2$直線を表すとする.$a=[$1$]$のとき,$2$直線の方程式はそれぞれ$[$2$]$,$[$3$]$となる.ただし,$[$2$]$,$[$3$]$は解答の順序を問わない.
(2)$\triangle \mathrm{ABC}$の各辺の長さを$\mathrm{AB}=c$,$\mathrm{BC}=a$,$\mathrm{CA}=b$とする.$a=2$,$b=3$のとき,$c$のとりうる値の範囲は$[$4$]$である.また,$\angle \mathrm{C}$の大きさが${90}^\circ$のとき,$c=[$5$]$となる.
(3)$a>0$かつ$a^{2p}=5$であるとき,$\displaystyle \frac{a^{2p}-a^{-2p}}{a^p+a^{-p}}$の値は$[$6$]$である.
(4)関数$y={(\log_3 x)}^2-\log_3 x^4+5 (1 \leqq x \leqq 27)$は,$x=[$7$]$で最大値$[$8$]$をとり,$x=[$9$]$で最小値$[$10$]$をとる.
(5)関数$f(x)$が等式$\displaystyle f(x)=2x^2+\int_{-2}^0 xf(t) \, dt+\int_0^2 f(t) \, dt$を満たすとき,$f(x)=[$11$]$である.
(6)男性$8$人,女性$10$人からなる企業があるとする.このとき,男性$2$人,女性$3$人の役員を選ぶ場合の数は$[$12$]$通りである.また,この$5$人の役員を選んだとき,役員から社長と副社長をそれぞれ$1$人選出する場合の数は$[$13$]$通りである.
(7)ベクトル$\overrightarrow{a}=(2,\ 1)$に垂直で,大きさが$\sqrt{5}$のベクトルは$2$つあり,それぞれを$\overrightarrow{b}$,$\overrightarrow{c}$とすると,$\overrightarrow{b}=([$14$])$,$\overrightarrow{c}=([$15$])$である.ただし,$[$14$]$,$[$15$]$は解答の順序を問わない.
(8)数列$4,\ 9,\ 16,\ 25,\ 36,\ \cdots$について考える.この数列の第$n$項を$a_n$で表すと,$a_n=[$16$]$となるので,初項から第$n$項までの和$S_n$は$S_n=[$17$]n^3+[$18$]n^2+[$19$]n$と表すことができる.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。