タグ「根号」の検索結果

44ページ目:全1904問中431問~440問を表示)
広島工業大学 私立 広島工業大学 2015年 第4問
放物線$y=x^2+ax+b$と$x$軸との交点の座標は$(\sin \theta,\ 0)$,$(\sqrt{3} \cos \theta,\ 0)$である.この放物線と$x$軸とで囲まれる部分の面積を$S$とするとき,次の問いに答えよ.ただし,$a,\ b$は定数とし,$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$とする.

(1)$a,\ b$を$\theta$を用いて表せ.
(2)$a=0$のとき,$S$の値を求めよ.
(3)$S$の最大値を求めよ.
広島工業大学 私立 広島工業大学 2015年 第7問
下図のような$\angle \mathrm{B}=\angle \mathrm{C}={30}^\circ$の二等辺三角形$\mathrm{ABC}$において,$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$,半径を$\sqrt{3}$とする.さらに,弧$\mathrm{AC}$上に$\mathrm{AP}=\mathrm{PC}$となる点$\mathrm{P}$をとる.次の問いに答えよ.
(図は省略)

(1)辺$\mathrm{AB}$,$\mathrm{BC}$の長さを求めよ.
(2)線分$\mathrm{BP}$の長さを求めよ.
(3)$\angle \mathrm{BPC}$および$\mathrm{CP}$の長さを求めよ.
(4)四角形$\mathrm{ABCP}$の面積を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上に$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ 1)$がある.

(i) 楕円
\[ E:\quad \frac{x^2}{4}+\frac{y^2}{b^2}=1 \quad (b>0) \]
は$2$点$\mathrm{A}$,$\mathrm{B}$を焦点としてもつとする.このとき,$b=\sqrt{[ア]}$である.
(ii) $2$点$\mathrm{A}$,$\mathrm{C}$を通る直線と,$(ⅰ)$で定めた楕円$E$の交点を$\mathrm{P}(x_0,\ y_0) (x_0>0)$とすると,
\[ x_0=-\frac{[イ]}{[ウ]}+\frac{[エ]}{[オ]} \sqrt{[カ]},\quad y_0=\frac{[キ]}{[ク]}+\frac{[ケ]}{[コ]} \sqrt{[サ]} \]
である.
(iii) $(ⅱ)$で定めた点$\mathrm{P}$に対して,$\mathrm{PB}+\mathrm{PC}=[シ]-\sqrt{[ス]}$である.$\mathrm{QB}+\mathrm{QC}=[シ]-\sqrt{[ス]}$となるような点$\mathrm{Q}(x,\ y)$の軌跡の方程式は
\[ \frac{(x-y)^2}{\alpha}+\frac{(x+y-\gamma)^2}{\beta}=1 \]
である.このとき,
\[ \alpha=\mkakko{セ}-\mkakko{ソ} \sqrt{\mkakko{タ}},\quad \beta=\mkakko{チ}-\mkakko{ツ} \sqrt{\mkakko{テ}},\quad \gamma=\mkakko{ト} \]
となる.

(2)座標平面上の原点$\mathrm{O}(0,\ 0)$,点$\mathrm{A}(2,\ 2)$,点$\mathrm{B}(k,\ 0)$を通り,軸が$y$軸に平行な放物線を$C$とする.ただし,$k>2$とする.

(i) 放物線$C$の方程式を$k$を用いて表すと,
\[ y=-\frac{[ナ]}{k-[ニ]}x^2+\frac{k}{k-[ヌ]}x \]
である.
(ii) 放物線$C$と$x$軸で囲まれた部分の面積$S$を$k$を用いて表すと,
\[ S=\frac{k^{\mkakko{ネ}}}{[ノ](k-[ハ])^{\mkakko{ヒ}}} \]
である.また,$k$を$k>2$の範囲で動かすとき,$S$の最小値は$\displaystyle \frac{[フ]}{[ヘ]}$であり,そのときの$k$の値は$k=[ホ]$である.
(iii) 放物線$C$と$x$軸で囲まれた部分を放物線$C$の軸のまわりに$1$回転してできる回転体の体積$V$を$k$を用いて表すと,
\[ V=\frac{k^{\mkakko{マ}}}{[ミ][ム](k-[メ])^{\mkakko{モ}}} \pi \]
である.また,$k$を$k>2$の範囲で動かすとき,$V$の最小値は$\displaystyle \frac{[ヤ][ユ]}{[ヨ][ラ]}\pi$であり,そのときの$k$の値は$\displaystyle k=\frac{[リ]}{[ル]}$である.
獨協大学 私立 獨協大学 2015年 第3問
次のように定義される数列$\{a_n\}$の一般項$a_n$を求めよ.ただし,$x^2-x-1=0$の解が$\displaystyle x=\frac{1-\sqrt{5}}{2},\ \frac{1+\sqrt{5}}{2}$という事実を利用せよ.
\[ a_1=1,\quad a_2=1,\quad a_{n+2}=a_{n+1}+a_n,\quad n=1,\ 2,\ 3,\ \cdots \]
金沢工業大学 私立 金沢工業大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=7$,$\mathrm{BC}=5$,$\mathrm{AC}=8$とし,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.

(1)$\displaystyle \mathrm{BD}=\frac{[タ]}{[チ]}$である.

(2)$\displaystyle \mathrm{AD}=\frac{[ツ] \sqrt{[テ]}}{[ト]}$である.
(3)$\triangle \mathrm{ABC}$の外接円の半径を$R_1$,$\triangle \mathrm{ABD}$の外接円の半径を$R_2$とすると,$\displaystyle \frac{R_2}{R_1}=\frac{\sqrt{[ナ]}}{[ニ]}$である.
金沢工業大学 私立 金沢工業大学 2015年 第5問
次の問いに答えよ.

(1)$0 \leqq \theta<2\pi$のとき,方程式$\sin \theta-\sqrt{3} \cos \theta=0$を満たす$\theta$の値は$\displaystyle \theta=\frac{\pi}{[ア]}$,$\frac{[イ]}{[ウ]} \pi$である.
(2)$0 \leqq \theta<2\pi$のとき,不等式$\sin^2 \theta-3 \cos^2 \theta \geqq 0$を満たす$\theta$の値の範囲は$\displaystyle \frac{\pi}{[エ]} \leqq \theta \leqq \frac{[オ]}{[カ]} \pi$,$\displaystyle \frac{[キ]}{[ク]} \pi \leqq \theta \leqq \frac{[ケ]}{[コ]} \pi$である.
東京理科大学 私立 東京理科大学 2015年 第3問
不等式$\displaystyle \frac{x}{x-1} \geqq 0$を満たす実数$x$の範囲を定義域とする関数
\[ f(x)=3x \sqrt{\frac{x}{x-1}} \]
について,以下の問いに答えよ.

(1)関数$f(x)$の定義域を求めよ.
(2)$\displaystyle a_1=\lim_{x \to \infty} \frac{f(x)}{x}$,$\displaystyle a_2=\lim_{x \to -\infty} \frac{f(x)}{x}$とする.$a_1$,$a_2$の値を求めよ.
(3)$(2)$の$a_1,\ a_2$に対して,$\displaystyle b_1=\lim_{x \to \infty}(f(x)-a_1x)$,$\displaystyle b_2=\lim_{x \to -\infty}(f(x)-a_2x)$とする.$b_1$,$b_2$の値を求めよ.
(4)関数$f(x)$の極小値を求めよ.
(5)曲線$y=f(x)$の漸近線の方程式を求めよ.
(6)$k$を定数とするとき,方程式$f(x)=k$の実数解の個数を求めよ.
早稲田大学 私立 早稲田大学 2015年 第5問
直線
\[ \ell:x \sin \theta+y \cos \theta=1 \quad \left( 0<\theta<\frac{\pi}{2} \right) \]
に接する$4$つの円を考える.

$x \sin \theta+y \cos \theta<1$の領域で$2$つの円は互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_1$である.このとき
\[ r_1=\frac{1}{[ソ]t^2+[タ]t} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
残りの$2$つの円は,$x \sin \theta+y \cos \theta>1$の領域で互いに接しており,そのうち$1$つの円は直線$\ell$と$x$軸に,もう一方の円は直線$\ell$と$y$軸に接している.これらの円の半径はいずれも$r_2$である.このとき
\[ r_2=\frac{1}{[チ]t^2+[ツ]t+[テ]} \quad (\text{ただし}t=\sin \theta+\cos \theta) \]
となる.
したがって
\[ [ト]<\frac{r_1}{r_2} \leqq \sqrt{[ナ]}+[ニ] \]
である.
金沢工業大学 私立 金沢工業大学 2015年 第1問
関数$f(x)=\sqrt{7x-3}-1$について考える.

(1)$f(x)$の逆関数は$\displaystyle f^{-1}(x)=\frac{[ア]}{[イ]}(x^2+[ウ]x+[エ]) (x \geqq [オカ])$である.
(2)曲線$y=f(x)$と直線$y=x$との交点の座標は$([キ],\ [ク])$,$([ケ],\ [コ])$である.ただし,$[キ]<[ケ]$とする.
(3)不等式$f^{-1}(x) \leqq f(x)$の解は$[サ] \leqq x \leqq [シ]$である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。