タグ「根号」の検索結果

184ページ目:全1904問中1831問~1840問を表示)
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \frac{\sqrt{7}+1}{\sqrt{7}-2}$の整数部分を$a$,小数部分を$b$とするとき,$(a,\ b)=[ア]$であり,$\displaystyle \frac{1}{a}+\frac{1}{b}$の小数部分の値は$[イ]$である.
(2)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=10$,$\mathrm{BC}=12$,$\mathrm{CA}=8$とし,$\angle \mathrm{A}$の二等分線と$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}=[ウ]$である.また,$\mathrm{AD}$を軸とし,$\mathrm{AC}$を$\mathrm{AB}$に重ねるように$\triangle \mathrm{ADC}$を折り返すとき,$\mathrm{C}$が$\mathrm{AB}$上に重なる点を$\mathrm{E}$とする.このとき,$\sin \angle \mathrm{BDE}=[エ]$である.
(3)$x>0,\ y>0$とする.$\displaystyle \left( x+\frac{5}{y} \right) \left( y+\frac{2}{x} \right)$は,$xy=[オ]$のとき最小値$[カ]$をとる.
(4)展開図が半径$r$の円と周の長さが$k$の扇形からなる円錐を考える.このとき円錐の高さは$[キ]$である.また,$k$を一定とすると,$r=[ク]$のとき円錐の表面積が最大になる.ただし,円周率を$\pi$とする.
(5)実数$x,\ y,\ z (xyz \neq 0)$について等式$3^x=2^y=\sqrt{6^{3z}}$が成立しているとき,$x$を$z$で表すと$[ケ]$であり,$\displaystyle \frac{1}{x}+\frac{1}{y}$を対数を用いないで表すと$[コ]$である.
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
西南学院大学 私立 西南学院大学 2010年 第3問
三角形$\mathrm{ABC}$において,$\sin A:\sin B:\sin C=7:5:3$とする.次の問に答えよ.

(1)$A,\ B,\ C$のうち最大の角を$\theta$とするとき,$\displaystyle \cos \theta=\frac{[セソ]}{[タ]}$である.
(2)三角形$\mathrm{ABC}$の面積が$60 \sqrt{3}$であるとき,辺$\mathrm{BC}$の長さは$[チツ]$である.また,この三角形の内接円の面積は$[テト]\pi$である.
西南学院大学 私立 西南学院大学 2010年 第1問
次の問いに答えよ.

(1)$p$を実数の定数とする.$x$に関する次の$2$つの方程式
\[ \begin{array}{l}
x^2+px+3p+9=0 \\
x^2-7x-p^2-7p-12=0
\end{array} \]
が$1$つ以上の共通解をもつとき,その共通解は,$\displaystyle \frac{[ア] \pm \sqrt{[イウ]}}{2}$あるいは,$[エ]$である.
(2)$a,\ b$を正の定数(ただし,$a>b$)とし,$ab=7$とする.方程式$\displaystyle \frac{b}{2x-a}-\frac{a}{2x-b}=0$の解が$x=3$ならば,$a=[オ]+\sqrt{[カ]}$,$b=[キ]-\sqrt{[ク]}$である.
西南学院大学 私立 西南学院大学 2010年 第3問
次の問いに答えよ.

(1)$0^\circ \leqq \theta \leqq 90^\circ$のとき,
$4 \sin^2 \theta+2(1+\sqrt{3}) \cos \theta-(4+\sqrt{3})=0$を満たしている.このとき,$\theta=[テト]^\circ$,$[ナニ]^\circ$である.ただし,$[テト]^\circ<[ナニ]^\circ$とする.
(2)$0^\circ \leqq \theta \leqq 90^\circ$のとき,
$\displaystyle \tan \theta \left( \frac{\sin^2 \theta}{\cos^2 \theta}-\frac{\sin \theta}{\cos \theta}-3 \right)+3=0$を満たしている.このとき,$\theta=[ヌネ]^\circ$,$[ノハ]^\circ$である.ただし,$[ヌネ]^\circ<[ノハ]^\circ$とする.
学習院大学 私立 学習院大学 2010年 第2問
第一象限内にあって$2$つの曲線
\[ y=x^2-1,\quad x^2+y^2+2 \sqrt{3}y-1=0 \]
と$2$つの直線
\[ y=3,\quad x=0 \]
とで囲まれる図形を$D$とする.

(1)$D$の面積を求めよ.
(2)$D$を$y$軸に関して$1$回転して得られる回転体の体積を求めよ.
北海道文教大学 私立 北海道文教大学 2010年 第4問
$\displaystyle \sin \theta-\cos \theta=\frac{\sqrt{2}}{3} (0^\circ<\theta<90^\circ)$のとき,次の値を求めなさい.

(1)$\sin \theta+\cos \theta$
(2)$\sin^4 \theta+\cos^4 \theta$
広島国際学院大学 私立 広島国際学院大学 2010年 第2問
鋭角三角形$\mathrm{ABC}$において,その面積$S$は$12 \sqrt{5}$に等しく,また$\displaystyle \sin A=\frac{\sqrt{5}}{3}$,$c=9$である.ここで$c$は辺$\mathrm{AB}$の長さであり,$A=\angle \mathrm{BAC}$である.

(1)辺$\mathrm{AC}$の長さ$b$を求めなさい.
(2)辺$\mathrm{BC}$の長さ$a$を求めなさい.
北海道薬科大学 私立 北海道薬科大学 2010年 第1問
次の各設問に答えよ.

(1)$\displaystyle \frac{4}{3+\sqrt{5}}+\frac{1}{2+\sqrt{5}}$を計算すると$[ ]$となる.

(2)$3^{2x}-2 \times 3^{x+2}=-81$を解くと,$x=[ ]$となる.
(3)$\overrightarrow{\mathrm{AB}}=(2,\ 3)$,$\overrightarrow{\mathrm{CB}}=(-4,\ 5)$とする.このとき,$\overrightarrow{\mathrm{AC}}=([ ],\ [ ])$であり,三角形$\mathrm{ABC}$の面積は$[ ]$である.
(4)$3$つの直線$ax+y=1$,$x+2y=3$,$x-ay=-3$が一点で交わるとき,定数$a$の値は
\[ [ ] \text{または} \frac{[ ]}{[ ]} \]
である.
藤田保健衛生大学 私立 藤田保健衛生大学 2010年 第3問
楕円$\displaystyle A:\frac{x^2}{4}+y^2=1$を原点を中心に反時計回りに$\displaystyle \frac{\pi}{3}$回転させて得た楕円を$B$とする.この回転により,点$\displaystyle \left( -\sqrt{3},\ \frac{1}{2} \right)$を接点とする$A$の接線$y=[ ]$は,$B$に対する接線$y=[ ]$に移される.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。