タグ「根号」の検索結果

181ページ目:全1904問中1801問~1810問を表示)
鳴門教育大学 国立 鳴門教育大学 2010年 第1問
実数$x,\ a$が$x>0$かつ$\displaystyle \sqrt{x}=\frac{1+3a}{3}$を満たすとき,$\sqrt{3x-4a}$を$a$で表せ.
東京海洋大学 国立 東京海洋大学 2010年 第1問
座標平面上の$2$直線$\ell:x \sin \theta-y \cos \theta=0$(ただし$0^\circ \leqq \theta<180^\circ$),$\displaystyle m:y=\frac{1}{\sqrt{3}}x$を考える.$\ell$,$m$に関する対称移動をそれぞれ$f,\ g$とする.

(1)対称移動$f$を表す行列を求めよ.
(2)移動の合成$f \circ g$が原点のまわりの回転移動となることを示せ.また,その回転角を$\theta$を用いて表せ.
(3)移動の合成$f \circ g$を表す行列と$g \circ f$を表す行列が一致するときの$\theta$を求めよ.ただし,$f$と$g$は異なる移動とする.
東京海洋大学 国立 東京海洋大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上で曲線$C:y=x |x-k|$(ただし$k$は正の定数)と直線$\ell:y=mx$が原点以外に$2$点$\mathrm{P}(\alpha,\ m \alpha)$,$\mathrm{Q}(\beta,\ m \beta)$で交わっている.ただし$0<\alpha<\beta$とする.

(1)$m$の範囲を$k$で表せ.
(2)$C$と$\ell$で囲まれた$2$つの図形の面積の和$S$を$m$と$k$で表せ.
(3)$S$が最小となるときの$m$を$k$で表せ.
(4)$(3)$のとき,$\displaystyle \frac{\mathrm{OQ}}{\mathrm{OP}}=\sqrt{2}$であることを示せ.
早稲田大学 私立 早稲田大学 2010年 第4問
$xyz$空間において,2点P$(1,\ 0,\ 1)$,Q$(-1,\ 1,\ 0)$を考える.線分PQを$x$軸の周りに1回転して得られる曲面を$S$とする.以下の問に答えよ.

(1)曲面$S$と,2つの平面$x=1$および$x=-1$で囲まれる立体の体積を求めよ.
(2)(1)の立体の平面$y=0$による切り口を,平面$y=0$上において図示せよ.
(3)定積分$\displaystyle \int_0^1 \sqrt{t^2+1}\, dt$の値を$\displaystyle t=\frac{e^s-e^{-s}}{2}$と置換することによって求めよ.
これを用いて,(2)の切り口の面積を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)整数$a,\ b$が$2a+3b=42$を満たすとき,$ab$の最大値は$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=1$,$\mathrm{CA}=\sqrt{2}$とし,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とする.正の整数$m,\ n$が$m\alpha + n\beta = \pi$を満たすとき,$m=[イ]$,$n=[ウ]$である.
(3)数列$\{a_n\}$は次の$3$つの条件を満たしている.

(i) $\{a_n\}$は等差数列で,その公差は$0$ではない.
(ii) $a_1=1$
(iii) 数列$a_3,\ a_6,\ a_{10}$は等比数列になっている.

このとき数列$\{a_n\}$の第$2010$項までの和$\displaystyle \sum_{n=1}^{2010}a_n$の値は$[エ]$である.
(4)四面体$\mathrm{ABCD}$は$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=1$を満たす.このような四面体の体積のとり得る最大値は$[オ]$である.
早稲田大学 私立 早稲田大学 2010年 第6問
放物線$y=3x^2-12x (m \leqq x \leqq m+2)$と$3$直線$y=0$,$x=m$,$x=m+2$で囲まれた$2$つの部分の面積の和を$S$とする.ただし,$m$は定数で$2<m<4$とする.このとき,$S$は$m=[テ]+\sqrt{[ト]}$で最小値$[ナ]+[ニ]\sqrt{[ヌ]}$をとる.ただし,$[ヌ]$はできる限り小さい自然数で答えること.
早稲田大学 私立 早稲田大学 2010年 第7問
$\alpha=72^\circ$のとき,$\cos 3\alpha - \cos 2\alpha = [ネ]$であり,$\displaystyle \cos^2 \frac{\alpha}{2} = \frac{[ノ]+\sqrt{[ハ]}}{8}$である.
早稲田大学 私立 早稲田大学 2010年 第1問
次の[\phantom{ア]}にあてはまる数,数式または文字等を解答用紙の所定欄に記入せよ.

(1)極限
\[ \lim_{n\to \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+n)} \]
の値は$[ア]$である.
(2)ある囲碁大会で,$5$つの地区から男女が各$1$人ずつ選抜されて,男性$5$人と女性$5$人のそれぞれが異性を相手とする対戦を$1$回行う.その対戦組み合わせを無作為な方法で決めるとき,同じ地区同士の対戦が含まれない組み合わせが起こる確率は$[イ]$である.
(3)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{Q}$とする.直線$\mathrm{BQ}$と直線$\mathrm{CP}$の交点を$\mathrm{R}$とするとき,ベクトル$\overrightarrow{\mathrm{AR}}$をベクトル$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$で表すと$[ウ]$である.
(4)関数
\[ y= \frac{x}{\sqrt{x^2+1}+1} \]
の逆関数を表す式は$y= [エ]$で,その定義域は$[オ]$である.
金沢工業大学 私立 金沢工業大学 2010年 第2問
半径が$1 \; \mathrm{m}$の円形のブリキ板から,中心角が$90^\circ$の扇形の部分を切り落して残りの部分で下図のような円錐形の容器を作る.
(図は省略)

(1)この容器の底面の半径は$\displaystyle r=\frac{[ク]}{[ケ]} \; \mathrm{m}$,深さは$\displaystyle h=\frac{\sqrt{[コ]}}{[サ]} \; \mathrm{m}$である.

(2)この容器に,その深さの$\displaystyle \frac{2}{3}$のところまで水を入れるとき,その水の体積は$\displaystyle \frac{\sqrt{[シ]}}{[スセ]} \pi \; \mathrm{m}^3$である.
金沢工業大学 私立 金沢工業大学 2010年 第3問
次の問いに答えよ.

(1)$\displaystyle \log_{10} \frac{8}{\sqrt[3]{5.4 \times 10^{-8}}}=[ア]+\frac{[イ]}{[ウ]} \log_{10}2-\log_{10}3$である.
(2)$0 \leqq x<\pi$のとき,$\sin 2x-\sqrt{3} \cos 2x=1$を満たす$x$の値は
\[ x=\frac{\pi}{[エ]},\quad \frac{[オ]}{[カキ]} \pi \]
である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。