タグ「根号」の検索結果

168ページ目:全1904問中1671問~1680問を表示)
大同大学 私立 大同大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{[ ] \sqrt{[ ]}-[ ]}$

$\displaystyle \hspace{27mm} =\frac{[ ]+[ ] \sqrt{2}+[ ] \sqrt{3}+\sqrt{6}}{[ ]}$
(2)外接円の半径が$16$である$\triangle \mathrm{ABC}$において$\displaystyle \cos B=\frac{\sqrt{7}}{4}$,$\displaystyle \cos C=\frac{3 \sqrt{7}}{8}$とするとき,$\displaystyle \sin B=\frac{[ ]}{[ ]}$,$\mathrm{AC}=[ ]$,$\mathrm{BC}=[ ] \sqrt{7}$である.$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,$\mathrm{AM}=[ ]$である.
(3)$10$個の製品の中に不良品が$3$個含まれている.これらから無作為に$4$個の製品を取り出すとき,含まれる不良品の個数を$X$で表す.$X=2$となる確率は$\displaystyle \frac{[ ]}{[ ]}$,$X=3$となる確率は$\displaystyle \frac{[ ]}{[ ]}$である.$X$の期待値は$\displaystyle \frac{[ ]}{[ ]}$である.
大同大学 私立 大同大学 2011年 第2問
次の問いに答えよ.

(1)$t=\log_2 x$とおく.$x>8$のとき$t>[ ]$である.$\displaystyle \log_2 \left( \log_4 \frac{x}{8} \right)=\log_4 \left( \log_8 \frac{x}{2} \right)$のとき,
\[ \log_2 \frac{t-[ ]}{[ ]}=\log_4 \frac{t-[ ]}{[ ]} \]
であり,$\displaystyle t=\frac{[ ]+[ ] \sqrt{[ ]}}{[ ]}$である.

(2)$1$辺の長さが$4$の正三角形$\mathrm{ABC}$の辺$\mathrm{AB}$を$3:1$に内分する点を$\mathrm{D}$とし,$\displaystyle \frac{1}{4} \overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\displaystyle \frac{1}{4} \overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおくと,$\overrightarrow{\mathrm{CD}}=[ ] \overrightarrow{b}-[ ] \overrightarrow{c}$である.さらに$\mathrm{CD}$の中点を$\mathrm{E}$とすると
\[ \overrightarrow{\mathrm{BE}}=-\frac{[ ]}{[ ]} \overrightarrow{b}+[ ] \overrightarrow{c},\quad \mathrm{BE}=\frac{\sqrt{[ ]}}{[ ]} \]
である.
福岡大学 私立 福岡大学 2011年 第3問
$f(x)=x+\sqrt{2} \sin x (0 \leqq x \leqq 2\pi)$とし,曲線$y=f(x)$を$C$とするとき,次の問いに答えよ.

(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$と$x$軸および直線$x=2\pi$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2011年 第4問
関数$\displaystyle f(x)=2 \log \frac{2+\sqrt{4-x^2}}{x}-\sqrt{4-x^2}$を考える.ただし,対数は自然対数である.以下の問いに答えなさい.

(1)関数$f(x)$の定義域は$0<x \leqq a$である.$a$の値を求めなさい.
(2)曲線$y=f(x)$の概形をかきなさい.なお,$y$の増減およびグラフの凹凸を調べた過程も記載しなさい.
(3)$0<x_0<a$とし,上問$(2)$の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(x_0,\ y_0)$における$C$の接線と$y$軸との交点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$の長さを求めなさい.ただし,$a$は上問$(1)$で求めた値とする.
獨協大学 私立 獨協大学 2011年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)式$(x-2y+3z)^2$を展開したとき,$y^2$の係数は$[$1$]$であり,$yz$の係数は$[$2$]$である.
(2)下の図の斜線部分は$3$つの不等式$[$3$]$,$[$4$]$,$[$5$]$で表される.ただし,境界線は含まないものとする.
(図は省略)
(3)$2$つの複素数$2+\sqrt{3}i$,$2-\sqrt{3}i$を解とする$2$次方程式の$1$つは
\[ x^2-[$6$]x+[$7$]=0 \]
である.
(4)$108$を素因数分解すると,$2$の$[$8$]$乗と$3$の$[$9$]$乗の積として表すことができる.したがって,$108$の正の約数は全部で$[$10$]$個である.
(5)当たりくじ$3$本を含む$10$本のくじがある.引いたくじはもとに戻さないものとして,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がこの順に$1$本ずつくじを引く.このとき$3$人のうちで$\mathrm{B}$と$\mathrm{C}$の$2$人だけが当たる確率は$[$11$]$であり,$3$人のうちで$\mathrm{B}$か$\mathrm{C}$のどちらか$1$人だけが当たる確率は$[$12$]$である.
(6)$a_{n+1}-a_n=1$,$a_1=0$と定められた数列の一般項は$[$13$]$である.また,$a_{n+1}-a_n=n$,$a_1=0$と定められた数列の一般項は$[$14$]$である.
(7)式$\sqrt{7+2 \sqrt{10}}+\sqrt{13-4 \sqrt{10}}$を簡単にすると$[$15$]$,式$\sqrt{8+2 \sqrt{15}}+\sqrt{5+2 \sqrt{6}}$を簡単にすると$[$16$]$である.
(8)$2$次関数
\[ y=ax^2+2ax+b \quad (a<0) \]
の定義域を$|x| \leqq 2$,値域を$|y| \leqq 9$とする.このとき,$a=[$17$]$で,$b=[$18$]$である.
千葉工業大学 私立 千葉工業大学 2011年 第4問
三角形$\mathrm{OAB}$は面積が$9 \sqrt{7}$で,$\mathrm{OA}=6$,$\mathrm{OB}=8$であり,$\angle \mathrm{AOB}$は鈍角である.辺$\mathrm{AB}$上に$2$点$\mathrm{L}$,$\mathrm{M}$があり,線分$\mathrm{OL}$上に点$\mathrm{N}$があって,
\[ \mathrm{AL}:\mathrm{LB}=1:3,\quad \mathrm{AM}:\mathrm{MB}=\mathrm{ON}:\mathrm{NL}=t:(1-t) \]
(ただし,$0<t<1$)が成り立っている.このとき,次の問いに答えよ.

(1)$\displaystyle \sin \angle \mathrm{AOB}=\frac{[ア] \sqrt{[イ]}}{[ウ]}$であり,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[エオ]$である.

(2)$\overrightarrow{\mathrm{ON}}$,$\overrightarrow{\mathrm{NM}}$は$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて


$\displaystyle \overrightarrow{\mathrm{ON}}=\frac{[カ]}{[キ]} t \overrightarrow{\mathrm{OA}}+\frac{[ク]}{[ケ]} t \overrightarrow{\mathrm{OB}}$

$\displaystyle \overrightarrow{\mathrm{NM}}=(1-\frac{[コ]}{[サ]}t) \overrightarrow{\mathrm{OA}}+\frac{[シ]}{[ス]} t \overrightarrow{\mathrm{OB}}$


と表される.
(3)$\overrightarrow{\mathrm{NM}}$が$\overrightarrow{\mathrm{AB}}$と垂直になるのは,$\displaystyle t=\frac{[セ]}{[ソ]}$のときである.このとき,三角形$\mathrm{NAB}$の面積は$[タ] \sqrt{[チ]}$である.
産業医科大学 私立 産業医科大学 2011年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)角$\theta$が$0^\circ \leqq \theta \leqq {90}^\circ$,$\displaystyle \tan \theta=\frac{4}{3}$を満たすとき,$\displaystyle \tan \frac{\theta}{2}$の値は$[ ]$である.
(2)$4$次方程式$2x^4+7x^3+4x^2+7x+2=0$の実数解のうち最大のものは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \{ \sqrt[3]{(n^3-n^2)^2}-2n \sqrt[3]{n^3-n^2}+n^2 \}$の値は$[ ]$である.
(4)円$x^2-8x+y^2-8y+30=0$に接する傾き$1$の$2$つの直線を$\ell_1$,$\ell_2$とする.放物線$y=2x^2+3x-2$と$2$直線$\ell_1$,$\ell_2$によって囲まれる図形の面積は$[ ]$である.ただし,この図形は原点を含むものとする.
(5)$x$を正の実数とするとき,関数$\displaystyle y=\left( \frac{2}{x} \right)^x$の導関数$\displaystyle \frac{dy}{dx}$は$[ ]$である.
(6)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \sqrt{1-2 \sin 2x+3 \cos^2 x} \, dx$の値は$[ ]$である.
(7)バスケットボールのフリースローを,$\mathrm{A}$,$\mathrm{B}$の$2$人がそれぞれ$3$回ずつ試みて,成功した回数が多い方が勝ちとする.$\mathrm{A}$の成功率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$の成功率は$\displaystyle \frac{2}{3}$であるとき,$\mathrm{A}$が勝つ確率は$[ ]$である.ただし,$\mathrm{A}$,$\mathrm{B}$の試行は独立な試行と考える.
(8)$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の数字が書かれた$8$枚のカードがある.カードをもとに戻すことなく,$1$枚ずつ$8$枚すべてを取り出し,左から順に横に一列に並べる.このとき,数字$k$のカードの左側に並んだ$k$より小さい数字のカードの枚数が$k-1$である確率は$[ ]$である.ただし,$k$は$1$から$7$までの整数のいずれかとする.
福岡大学 私立 福岡大学 2011年 第2問
次の$[ ]$をうめよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{N}$,線分$\mathrm{BN}$と$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{AP}}=[ ]$となる.さらに,$\mathrm{AB}=9$,$\mathrm{AC}=6$,$\mathrm{AP}=4$のとき,$\overrightarrow{b}$と$\overrightarrow{c}$の内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[ ]$である.
(2)点$(2,\ -3)$を点$(1,\ -1)$に移し,点$(-1,\ 4)$を点$(7,\ -2)$に移す$1$次変換$f$を表す行列$A$を求めると,$A=[ ]$である.また,原点を中心として一定の角だけ回転する回転移動$g$が点$(3,\ 3)$を点$(1+2 \sqrt{2},\ 1-2 \sqrt{2})$に移すとき,$g$を表す行列$B$を求めると,$B=[ ]$である.
(3)数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$a_2=1$,$a_{n+2}=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$a_7,\ a_8$の値を求めると,$(a_7,\ a_8)=[ ]$である.また,$\displaystyle \sum_{k=1}^\infty \frac{a_k}{2^k}$の値は$[ ]$である.
京都薬科大学 私立 京都薬科大学 2011年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$\displaystyle \frac{1}{1+\displaystyle\frac{2}{1+\displaystyle\frac{3}{1+\displaystyle\frac{4}{1+\displaystyle\frac{5}{6}}}}}$を簡単にすると,$\displaystyle \frac{[ ]}{[ ]}$となる.

(2)整式$x^{2011}$を$x^2+1$で割った余りは,$[ ]$となる.
(3)対数方程式$\log_{x-1}(x^3-3x^2-x+3)=2$を解くと,$x=[ ]$となる.
(4)$-{90}^\circ<x<0^\circ$において,$\displaystyle \sqrt{\frac{1+\cos x}{1-\cos x}}=8$のとき,$\displaystyle \tan \frac{x}{2}=[ ]$となる.
(5)第$1$項から第$n$項($n=1,\ 2,\ 3,\ \cdots$)までの和が$3n^2-n$である数列の第$100$項目の数は$[ ]$である.
京都薬科大学 私立 京都薬科大学 2011年 第4問
四面体$\mathrm{OABC}$について,次の$[ ]$にあてはまる正の数を記入せよ.ただし,$[ア]:[イ]$,$[ウ]:[エ]$および$[オ]:[カ]$については,もっとも簡単な整数比で表すこと.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,線分$\mathrm{OG}$を$3:2$に内分する点を$\mathrm{D}$,直線$\mathrm{BD}$と平面$\mathrm{AOC}$の交点を$\mathrm{E}$,直線$\mathrm{OE}$と直線$\mathrm{AC}$との交点を$\mathrm{F}$とする.このとき,
\[ \overrightarrow{\mathrm{OG}}=[ ] \overrightarrow{\mathrm{OA}}+[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となり,
\[ \overrightarrow{\mathrm{BD}}=[ ] \overrightarrow{\mathrm{OA}}-[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となる.また,$\mathrm{OE}:\mathrm{EF}=[ア]:[イ]$,$\mathrm{BD}:\mathrm{DE}=[ウ]:[エ]$であり,二つの四面体$\mathrm{ABFO}$と$\mathrm{CEFB}$の体積比は$[オ]:[カ]$である.
(2)$\angle \mathrm{COB}={30}^\circ$,$\angle \mathrm{AOC}={45}^\circ$,$\angle \mathrm{CAO}={60}^\circ$,$\mathrm{OA}=\sqrt{3}+1$,$\mathrm{BC}=\sqrt{2}$とすると,$\mathrm{OC}=[ ]$,$\mathrm{CA}=[ ]$であり,$\mathrm{OB}$は$[$*$]$または$[$**$]$である.ただし,$[$*$]>[$**$]$とする.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。