タグ「根号」の検索結果

161ページ目:全1904問中1601問~1610問を表示)
北海学園大学 私立 北海学園大学 2011年 第1問
次の問いに答えよ.

(1)$x^2-4x+3<0$を満たすような$x^2-6x+8=0$の解を求めよ.
(2)座標平面上の$2$点$(2,\ 3)$と$(4,\ 2)$を通る直線に垂直に交わり,かつ円$x^2+y^2=5$に接する直線の方程式を求めよ.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=2:(1+\sqrt{3}):\sqrt{2}$であるとき,$\angle \mathrm{B}$の大きさを求めよ.また,$\sin A$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第1問
次の問いに答えよ.

(1)放物線$y=x^2+2ax+b$を$x$軸方向に$-1$,$y$軸方向に$+2$だけ平行移動すると,頂点の座標は$(3,\ 0)$となる.定数$a,\ b$の値を求めよ.
(2)三角形$\mathrm{ABC}$において,$\displaystyle \cos A=\frac{\sqrt{21}}{7}$のとき,$\sin A$を求めよ.さらに,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=2$とするとき,$\mathrm{CA}$の長さを求めよ.
(3)$(x-1)^3-27$を因数分解せよ.
明治大学 私立 明治大学 2011年 第3問
次の連立不等式で表される領域$D$を考える.
\[ \left\{ \begin{array}{l}
\displaystyle \left( x-\frac{1}{2} \right)^2+y^2 \leqq 1 \\
\displaystyle y \leqq -2x+\frac{3}{2} \\
\displaystyle y \leqq x+\frac{7}{10}
\end{array} \right. \]
以下の問に答えなさい.

(1)$y$切片が$k$で,直線$\displaystyle y=-2x+\frac{3}{2}$に垂直な直線を$\ell$とする.直線$\ell$が領域$D$と共有点を持つとき,$k$のとる範囲は,
\[ -\frac{[チ]}{[ツ]}-\frac{\sqrt{[テ]}}{[ト]} \leqq k \leqq \frac{[ナ]}{[ニ]} \]
である.
(2)直線$\ell$が領域$D$で切り取られる線分の長さを$L$とおく.$L$が最大となるのは,$\displaystyle k=-\frac{[ヌ]}{[ネ]}$のときであり,そのとき,$\displaystyle L=[ノ]+\frac{\sqrt{[ハ]}}{[ヒフ]}$となる.
明治大学 私立 明治大学 2011年 第4問
平行四辺形$\mathrm{ABCD}$を考える.辺$\mathrm{AB}$と辺$\mathrm{AD}$の長さは,それぞれ$3,\ 4$で,$\angle \mathrm{ABC}$は$60^\circ$であるとする.辺$\mathrm{AD}$と辺$\mathrm{BC}$の中点をそれぞれ,$\mathrm{M}$,$\mathrm{N}$とおく.また,線分$\mathrm{AN}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,線分$\mathrm{CM}$と線分$\mathrm{BD}$の交点を$\mathrm{Q}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BC}}$とおく.以下の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ヘ]}{[ホ]} \overrightarrow{a}+\frac{[マ]}{[ミ]} \overrightarrow{b}$と表せる.また,$\displaystyle \mathrm{AP}=\frac{[ム] \sqrt{[メ]}}{[モ]}$となる.

(2)$\displaystyle \cos (\angle \mathrm{PAQ})=\frac{[ヤユ] \sqrt{[ヨ]}}{[ラリ]}$となる.
(3)三角形$\mathrm{ABP}$の外接円の半径は$\displaystyle \frac{\sqrt{[ルレロ]}}{[ワヲ]}$である.
(4)三角形$\mathrm{ABP}$の外心を$\mathrm{O}$とおくとき,$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表しなさい.
明治大学 私立 明治大学 2011年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)大小$2$つのサイコロを振り,出た目をそれぞれ$a,\ b$とする.$ab \geqq 20$となる確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$ab$が$3$で割り切れる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.

(2)$\triangle \mathrm{ABC}$において$\mathrm{BC}=2$,$\mathrm{AC}=\sqrt{2}$,$\angle \mathrm{C}=105^\circ$とする.
\[ \cos 105^\circ=\frac{\sqrt{[オ]}-\sqrt{[カ]}}{[キ]} \]
である.また,$\mathrm{AB}=[ク]+\sqrt{[ケ]}$であり,$\angle \mathrm{A}=[コサ]^\circ$である.
(3)$a,\ b$を正の実数で,$a \neq 1,\ b \neq 1$とする.このとき

$(\log_{a^2}b+\log_b a^3)(\log_{a^3}b+\log_{b^2}a)$

$\displaystyle =\frac{[シ]}{[ス]} \cdot (\log_a b)^2+\frac{[セ]}{[ソ]} \cdot (\log_b a)^2+\frac{[タ]}{[チ]}$

である.
明治大学 私立 明治大学 2011年 第2問
次の空欄$[ア]$から$[キ]$に当てはまるものを入れよ.

行列$M$を$M=\left( \begin{array}{rr}
-1 & -1 \\
1 & -1
\end{array} \right)$で定める.このとき
\[ M=\sqrt{2} \left( \begin{array}{cc}
\cos \frac{[ア]}{[イ]} \pi & -\sin \frac{[ア]}{[イ]} \pi \\ \\
\sin \frac{[ア]}{[イ]} \pi & \cos \frac{[ア]}{[イ]} \pi
\end{array} \right) \]
である.
次に$\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=M^n \left( \begin{array}{c}
1 \\
0
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$とおき,点$(a_n,\ b_n)$を$\mathrm{P}_n$で表す.このとき点$\mathrm{P}_n$と原点$\mathrm{O}$との距離は$[ウ]^{\frac{n}{2}}$である.またベクトル$\overrightarrow{\mathrm{OP}_n}$と$\overrightarrow{\mathrm{OP}_{n+2}}$のなす角は$\displaystyle \theta=\frac{[エ]}{[オ]}\pi$である.ただし,$0 \leqq \theta \leqq \pi$とする.
$3$点$\mathrm{P}_n$,$\mathrm{P}_{n+1}$,$\mathrm{P}_{n+2}$を頂点とする三角形の面積は$[カ] \times [キ]^{n-1}$である.
ただし
\[ \left( \begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array} \right) \left( \begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array} \right)=\left( \begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array} \right) \]
となることは使ってよい.
明治大学 私立 明治大学 2011年 第4問
次の空欄$[ア]$から$[ス]$に当てはまるものを入れよ.ただし連続した空欄$[シス]$は$2$桁の数字をあらわす.

$a$を正の定数とする.$2$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(t,\ t^2)$の間の距離を$L(t)$とする.$L(t)$は$\displaystyle a \leqq \frac{1}{2}$の場合は$t=[ア]$で最小値$[イ]$をとり,$\displaystyle a>\frac{1}{2}$の場合は$|t|=[ウ]$のとき最小値$[エ]$をとる.
$\mathrm{A}(0,\ a)$を中心とする半径$1$の円$C_1$と放物線$C_2:y=x^2$が$2$点で接しているとき$\displaystyle a=\frac{[オ]}{[カ]}$であり,接点の座標は
\[ \left( \frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right),\quad \left( -\frac{\sqrt{[キ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right) \]
である.このとき,円$C_1$と放物線$C_2$で囲まれた図形(下の図の灰色の部分)を$y$軸のまわりに$1$回転して得られる回転体の体積は$\displaystyle \frac{[サ]}{[シス]}\pi$である.
ただし,$2$つの曲線が共有点$\mathrm{P}$をもち,$\mathrm{P}$における$2$つの曲線の接線が一致す
るとき,これら$2$つの曲線は$\mathrm{P}$で接しているといい,$\mathrm{P}$を接点という.
(図は省略)
明治大学 私立 明治大学 2011年 第2問
次の各問の$[ ]$にあてはまる数を記入せよ.

座標空間内に点$\mathrm{P}(s+3,\ 2s-1,\ 2s+1)$と点$\mathrm{Q}(2s+3,\ 1-2s,\ s-1)$がある.ただし,$s$は実数全体を動く.次の問に答えよ.
(1)線分$\mathrm{PQ}$の長さは
\[ \sqrt{[ア] \left( [イ]s^2-[ウ]s+[エ] \right)} \]
であり,$\displaystyle s=\frac{[オ]}{[カ]}$のときに最小値$\sqrt{[キ]}$をとる.

(2)$\mathrm{O}$を原点とし,$\theta=\angle \mathrm{POQ}$とする.$\cos \theta$のとる値の範囲を求めよう.$k=\cos \theta$とおくと
\[ k=\frac{[クケ]s+[コ]}{[サ]s^2+[シ]s+[スセ]} \cdots\cdots (*) \]
である.

(i) $\displaystyle s=-\frac{[コ]}{[クケ]}$のとき$k=0$となる.
(ii) $k \neq 0$のときに$(*)$を満たす実数$s$が存在するための条件は
\[ -\frac{[ソ]}{[タ]} \leqq k \leqq \frac{[チ]}{[ツ]} \]
である.

$(ⅰ),\ (ⅱ)$より$\cos \theta$のとる値の範囲は
\[ -\frac{[ソ]}{[タ]} \leqq \cos \theta \leqq \frac{[チ]}{[ツ]} \]
である.また,$\displaystyle \cos \theta=\frac{[チ]}{[ツ]}$となるのは$\displaystyle s=\frac{[テ]}{[ト]}$のときである.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)循環小数$1. \dot{4} \dot{6}$を分数で表すと$[ア]$である.$1. \dot{4} \dot{6}+2. \dot{7}$を循環小数で表すと$[イ]$となる.
(2)$f(\theta)=\sqrt{3} \sin 2\theta-\cos 2\theta+\sqrt{3} \sin \theta+\cos \theta$とする.$x=\sqrt{3} \sin \theta+\cos \theta$として,$f(\theta)$を$x$で表すと$[ウ]$となる.$0 \leqq \theta \leqq \pi$であるとき,関数$f(\theta)$の最大値は$[エ]$である.
(3)$\displaystyle \left( \frac{4}{3} \right)^n$の整数部分が$10$桁になるような整数$n$は$[オ]$個ある.$n$がその中で$4$番目に小さい整数であるとき,$\displaystyle \left( \frac{4}{3} \right)^n$の最高位の数字は$[カ]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(4)円$(x-2)^2+y^2=1$と直線$y=mx$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるとき,$m$の値の範囲は$[キ]$であり,原点を$\mathrm{O}$とするとき,線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの積は$[ク]$である.
(5)図のように半径$r$の半球面に円柱が内接している.円柱の体積が最大になるのは円柱の高さが$[ケ]$のときであり,その円柱の体積は$[コ]$である.
(図は省略)
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)関数$\displaystyle f(x)=\left( \frac{1}{9} \right)^x-12 \left( \frac{1}{3} \right)^x+40 (-3 \leqq x \leqq -1)$を考える.$-3 \leqq x \leqq -1$のとき,$\displaystyle t=\left( \frac{1}{3} \right)^x$のとりうる値の範囲を求めると$[ア]$である.また,$f(x)$の最小値$m$とそのときの$x$の値を求めると$(m,\ x)=[イ]$である.
(2)$0 \leqq \theta < 2\pi$とする.方程式$\cos 2\theta+3 \cos \theta-1=0$を解くと$\theta=[ウ]$である.また,方程式$\displaystyle \log_3 (\sqrt{3} \tan \theta+1)+\log_3 (\cos \theta)=\frac{1}{2}$を解くと$\theta=[エ]$である.
(3)$2x^3-ax^2-2x+a$を因数分解すると$[オ]$である.また,$P(x)=2x^3-ax^2-2x+a$,$Q(x)=-x^2+(2a-1)x+2a$とおくとき,すべての正の$x$について$P(x)-Q(x)>0$が成立するような$a$の値の範囲を求めると$[カ]$である.
(4)四角形$\mathrm{ABCD}$が半径$4$の円に内接し,$\mathrm{AB}=4$,$\mathrm{BC}=4 \sqrt{3}$,$\mathrm{CD}=\sqrt{3} \mathrm{DA}$とする.このとき,$\mathrm{AC}$の長さを求めると$\mathrm{AC}=[キ]$であり,$\mathrm{DA}$の長さを求めると$\mathrm{DA}=[ク]$である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。