タグ「根号」の検索結果

160ページ目:全1904問中1591問~1600問を表示)
金沢工業大学 私立 金沢工業大学 2011年 第5問
$\mathrm{O}$を原点とする平面において,$\mathrm{OA}$,$\mathrm{OB}$を$2$辺とし,$\mathrm{OC}$を対角線とする平行四辺形$\mathrm{OACB}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくと,それぞれのベクトルの大きさは
\[ |\overrightarrow{a}|=2,\quad |\overrightarrow{b}|=3,\quad |\overrightarrow{c}|=\sqrt{19} \]
である.このとき,

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$であり,$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{[イ]}$である.

(2)ベクトル$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{b}$に直交する$t$の値を$t_0$とすると,$\displaystyle t_0=\frac{[ウエ]}{[オ]}$であり,$|\overrightarrow{a}+t_0 \overrightarrow{b}|=\sqrt{[カ]}$である.

(3)$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[キ]}{[ク]} \sqrt{[ケ]}$である.
青森中央学院大学 私立 青森中央学院大学 2011年 第2問
$\displaystyle x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}},\ y=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$のとき,$x^2+y^2-62$の値を求めよ.
上智大学 私立 上智大学 2011年 第3問
$xyz$空間内の正四面体$\mathrm{ABCD}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$はすべて原点$\mathrm{O}$を中心とする半径$1$の球面$S$上にある.$\mathrm{A}$の座標は$(0,\ 0,\ 1)$であり,$\mathrm{B}$の$x$座標は正,$y$座標は$0$である.また,$\mathrm{C}$の$y$座標は$\mathrm{D}$の$y$座標より大きい.

(1)$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$z$座標は$\displaystyle \frac{[ニ]}{[ヌ]}$である.

(2)$\mathrm{C}$の$x$座標は$\displaystyle \frac{[ネ]}{[ノ]} \sqrt{[ハ]}$である.

(3)$\mathrm{O}$を端点とし$\triangle \mathrm{ABC}$の重心を通る半直線が$S$と交わる点を$\mathrm{P}$とする.線分$\mathrm{AP}$の長さは$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$,ベクトル$\overrightarrow{\mathrm{AP}}$とベクトル$\overrightarrow{\mathrm{BP}}$の内積は$[ホ]$である.

以後,四面体$\mathrm{PABC}$を$V_\mathrm{p}$で表す.

(4)$\triangle \mathrm{APB}$の面積は$\displaystyle \frac{[マ]}{[ミ]}$である.

(5)$(3)$で$\triangle \mathrm{ABC}$に対して点$\mathrm{P}$および四面体$V_\mathrm{p}$を定めたときと同様に,$\triangle \mathrm{ACD}$,$\triangle \mathrm{ABD}$,$\triangle \mathrm{BCD}$に対してそれぞれ点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{T}$および四面体$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$を定める.四面体$\mathrm{ABCD}$と$V_\mathrm{P}$,$V_\mathrm{Q}$,$V_\mathrm{R}$,$V_\mathrm{T}$をあわせた立体を$V$とすると,$V$の表面積は$[ム]$であり,$V$の体積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2011年 第2問
不等式$\displaystyle -\sqrt{5} \leqq x-\frac{1}{x} \leqq \sqrt{5}$を解け.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2011年 第2問
不等式$\displaystyle -\sqrt{5} \leqq x-\frac{1}{x} \leqq \sqrt{5}$を解け.
早稲田大学 私立 早稲田大学 2011年 第4問
公正な硬貨$X$を$3$回投げる.「$1$回目に表が出る」という事象を$A$,「$3$回目に表が出る」という事象を$B$,「試行結果が裏→表の順序で出ることはない」という事象を$C$とする.このとき,
\[ P(A \cap C)-P(A)P(C)=\frac{[ス]}{[セ]} \]
である.

次に,硬貨$X$が必ずしも公正でなく表の出る確率が$a (0<a<1)$,裏の出る確率が$1-a$であるとする.この場合の確率を$P_a$で表すとき,
\[ \frac{P_a(A)P_a(B)P_a(C)}{P_a(A \cap B \cap C)} \]
を最小にする$a$の値は$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$である.

ただし,$[セ]$,$[タ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2011年 第6問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$であるとき,$2 \cos^2 \theta+(\sin \theta+3 \cos \theta)^2$の最小値は$[ト]$で,最大値は$\sqrt{[ナ]}+[ニ]$である.
自治医科大学 私立 自治医科大学 2011年 第2問
$\displaystyle x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$,$\displaystyle y=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$のとき,$x^2+y^2-62$の値を求めよ.
自治医科大学 私立 自治医科大学 2011年 第7問
$\displaystyle \sin \theta -\cos \theta=\frac{\sqrt{2}}{3} (0 \leqq \theta \leqq \frac{\pi}{2})$のとき,$6(\sin \theta+\cos \theta)$の値を求めよ.
自治医科大学 私立 自治医科大学 2011年 第10問
円に内接する四角形$\mathrm{ABCD}$について考える($\angle \mathrm{ABC}=\theta$とする).四角形$\mathrm{ABCD}$の面積は,$4 \sqrt{6}$である.辺$\mathrm{AB}$および辺$\mathrm{BC}$の長さが,それぞれ,$1$,$5$であり,$\displaystyle \cos \theta=-\frac{1}{5}$となるとき,辺$\mathrm{CD}$の長さを求めよ.ただし,辺$\mathrm{CD}$の長さは辺$\mathrm{AD}$の長さより大きいものとする.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。