タグ「根号」の検索結果

150ページ目:全1904問中1491問~1500問を表示)
埼玉大学 国立 埼玉大学 2011年 第3問
$a$を1より大きい定数とする.$xy$平面上の点$(a \cos t,\ \sqrt{a^2-1} \sin t)$と直線$x+y = \sqrt{3}a$の距離を$f(t)$とおく.$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$f(t)$の最小値を$m$とする.

(1)$m$を$a$の関数として表せ.
(2)(1)で求めた$a$の関数$m$の最小値を求めよ.
埼玉大学 国立 埼玉大学 2011年 第3問
$a$を$1$より大きい定数とする.$xy$平面上の点$(a \cos t,\ \sqrt{a^2-1} \sin t)$と直線$x+y = \sqrt{3}a$の距離を$f(t)$とおく.$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$f(t)$の最小値を$m$とする.

(1)$m$を$a$の関数として表せ.
(2)(1)で求めた$a$の関数$m$の最小値を求めよ.
広島大学 国立 広島大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{2-\sqrt{3}}$の整数部分を$a$,小数部分を$b$とする.不等式
\[ \frac{1}{2-\sqrt{3}} < \frac{6}{a}+\frac{k}{b} \]
を満たす$k$の値の範囲を求めよ.
(2)$a,\ b$は定数で,$a>0$とする.2次関数$f(x)=ax^2-2x+b$の定義域を$-1 \leqq x \leqq 2$とし,$f(-1)<f(2)$を満たすとする.関数$y=f(x)$の値域が$-1 \leqq y \leqq 7$であるとき,定数$a,\ b$の値を求めよ.
金沢大学 国立 金沢大学 2011年 第3問
次の問いに答えよ.

(1)$x \geqq 0$のとき,不等式$\displaystyle 1-\cos \frac{\pi}{2} \leqq \frac{x^2}{8}$を示せ.
(2)$\displaystyle I_n = \int_0^2 x^ne^x \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.$I_1$の値を求めよ.さらに,等式$I_n=2^n e^2-nI_{n-1} \quad (n=2,\ 3,\ 4,\ \cdots)$を示せ.
(3)$I_2,\ I_3,\ I_4$および$I_5$の値を求めよ.
(4)不等式$\displaystyle \int_0^4 \left( 1-\cos \frac{x}{2} \right) e^{\sqrt{x}} \, dx \leqq -2e^2+30$を示せ.
九州大学 国立 九州大学 2011年 第2問
数列$a_1,\ a_2,\ \cdots,\ a_n,\ \cdots$は
\[ a_{n+1} = \frac{2a_n}{1-a_n^2},\quad n = 1,\ 2,\ 3,\ \cdots \]
をみたしているとする.このとき,以下の問いに答えよ.

(1)$\displaystyle a_1 = \frac{1}{\sqrt{3}}$とするとき,$a_{10}$および$a_{11}$を求めよ.
(2)$\displaystyle \tan \frac{\pi}{12}$の値を求めよ.
(3)$\displaystyle a_1 = \tan \frac{\pi}{7}$とする.$a_k = a_1$をみたす$2$以上の自然数$k$で最小のものを求めよ.
弘前大学 国立 弘前大学 2011年 第6問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が次の条件を満たしているものとする.
\[ A \left( \begin{array}{c}
1 \\
1
\end{array} \right) = \left( \begin{array}{c}
\sqrt{\frac{1}{2}} \\
\sqrt{\frac{3}{2}}
\end{array} \right) \quad A \left( \begin{array}{c}
-1 \\
1
\end{array} \right) = \left( \begin{array}{c}
-\sqrt{\frac{3}{2}} \\
\sqrt{\frac{1}{2}}
\end{array} \right) \]
このとき,次の問いに答えよ.

(1)$A$および$A^2$を求めよ.
(2)Oを座標平面上の原点とし,Oと異なる点P$(x_1,\ y_1)$があり,他の2点Q$(x_2,\ y_2)$,R$(x_3,\ y_3)$に対して次の関係があるとする.
\[ \left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right) = A^3 \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \qquad \left( \begin{array}{c}
x_3 \\
y_3
\end{array} \right) = A^{-1} \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right) \]
このとき,三角形OQRが正三角形であることを証明せよ.
(3)点P,Qは(2)と同じものとする.$\angle \text{OPQ}$の大きさを求めよ.
岩手大学 国立 岩手大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3\sqrt{2}+4},\ y=\sqrt{3\sqrt{2}-4}$のとき,$\displaystyle \frac{x}{y}+\frac{y}{x}$の値を求めよ.
(2)関数$f(x)=x^2+ax-2a+6$の$x \geqq 0$における最小値が1であるとき,$a$の値を求めよ.
(3)三角形ABCの辺ABを$2:1$に内分する点をD,辺ACを$3:5$に内分する点をEとする.4点B,C,E,Dが同一円周上にあるとき,辺ABと辺ACの長さの比$\text{AB}:\text{AC}$を求めよ.
金沢大学 国立 金沢大学 2011年 第3問
座標平面上に$\mathrm{A}(p,\ q)$,$\mathrm{B}(-q,\ p)$,$\mathrm{C}(-p,\ -q)$,$\mathrm{D}(q,\ -p)$を頂点とする正方形がある.ただし,$p>0,\ q>0,\ p^2+q^2=1$とする.また,直線$\mathrm{AB}$,$\mathrm{AD}$が直線$x+y=1$と交わる点をそれぞれ$\mathrm{E}(r,\ s)$,$\mathrm{F}(t,\ u)$とする.次の問いに答えよ.

(1)直線$\mathrm{AB}$,$\mathrm{AD}$の方程式を$p,\ q$を用いて表せ.
(2)$r,\ s,\ t,\ u$を$p,\ q$を用いて表せ.
(3)$k= p+ q$とおくとき,$pq$を$k$の式で表せ.また,$k \leqq \sqrt{2}$を示せ.
(4)$st- ru$を$k$の式で表せ.また,$st -ru$の最小値を求めよ.
(図は省略)
横浜国立大学 国立 横浜国立大学 2011年 第5問
$xy$平面上に直線$\ell$がある.行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$の表す1次変換$f$は,次の(i),(ii),(iii)を満たす.

\mon[(i)] 平面の点の$f$による像はすべて$\ell$上にある.
\mon[(ii)] $f$は$\ell$の点をすべて原点に移す.
\mon[(iii)] 点Pが円$x^2-2x+y^2-2y+1=0$上を動くとき,$f$によるPの像の$x$座標は最大値$1+\sqrt{5}$,最小値$1-\sqrt{5}$をとる.

次の問いに答えよ.

(1)$A$を求めよ.また$\ell$の方程式を求めよ.
(2)(iii)で最大値$1+\sqrt{5}$をとるときのPの座標を求めよ.
岩手大学 国立 岩手大学 2011年 第4問
2つの関数を$f(x)=\sqrt{x+1} \ (x \geqq -1),\ g(x)=x^2-1 \ (x \geqq 0)$とし,$y=f(x)$と$y=g(x)$で表される曲線をそれぞれ$C_1,\ C_2$とする.このとき,次の問いに答えよ.

(1)$f(x)$の逆関数が$g(x)$であることを示せ.
(2)曲線$C_1$と曲線$C_2$の交点Pの座標を求めよ.
(3)2つの曲線$C_1,\ C_2$,および2直線$x=0,\ x=1$で囲まれた図形の面積が,(2)で求めた交点Pを通る直線により二等分されるとき,この直線の傾きを求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。