タグ「根号」の検索結果

148ページ目:全1904問中1471問~1480問を表示)
北九州市立大学 公立 北九州市立大学 2012年 第2問
以下の問いの空欄$[サ]$~$[ナ]$に適する数値,式を記せ.

(1)$2$次方程式$2x^2-5x+4=0$の$2$つの解を$\alpha,\ \beta$とするとき,
\[ \alpha^2+\beta^2=[サ],\quad \frac{1}{\alpha}+\frac{1}{\beta}=[シ],\quad \alpha^3+\beta^3=[ス] \]
である.
(2)点$\mathrm{P}$が円$x^2+y^2=4$の周上を動くとき,点$\mathrm{A}(8,\ 0)$と点$\mathrm{P}$を結ぶ線分$\mathrm{AP}$を$\mathrm{AQ}:\mathrm{QP}=2:3$に内分する点$\mathrm{Q}$の軌跡は中心$[セ]$,半径$[ソ]$の円である.
(3)$0 \leqq \theta<2\pi$とする.方程式$\sqrt{3} \sin \theta+\cos \theta+1=0$を解くと$\theta=[タ],\ [チ]$である.
(4)$4^{45}$は$[ツ]$桁の数である.また,$\displaystyle \left( \frac{1}{8} \right)^{17}$は,小数第$[テ]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$とする.
(5)$a_1=1$,$a_{n+1}=a_n+n (n=1,\ 2,\ 3,\ \cdots)$で定義される数列$\{a_n\}$の一般項は,$a_n=[ト]$である.また,数列$\{a_n\}$の初項から第$n$項までの和は,$S_n=[ナ]$である.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第2問
空間に$2$点$\displaystyle \mathrm{A} \left( 0,\ 0,\ \frac{3}{2} \right)$,$\mathrm{B}(0,\ 0,\ 2)$と,$xy$平面上を動く点$\mathrm{P}(s,\ t,\ 0)$がある.また,線分$\mathrm{BP}$を$u:(1-u)$に内分する点を$\mathrm{Q}$とする.ただし,$s$と$t$は実数であり,$0<u<1$である.

(1)点$\mathrm{Q}$の座標を$u,\ s,\ t$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AQ}}|=|\overrightarrow{\mathrm{AB}}|$を満たす$u$を$s$と$t$を用いて表せ.
(3)点$\mathrm{Q}$が$yz$平面に平行な平面$\displaystyle x=\frac{\sqrt{3}}{4}$上にあり,かつ$|\overrightarrow{\mathrm{AQ}}|=|\overrightarrow{\mathrm{AB}}|$が成り立つとき,点$\mathrm{P}$は必ずある円$C$の上にある.円$C$の中心の座標と半径を求めよ.
京都大学 国立 京都大学 2011年 第1問
次の各問に答えよ.

(1)箱の中に,$1$から$9$までの番号を$1$つずつ書いた$9$枚のカードが入っている.ただし,異なるカードには異なる番号が書かれているものとする.この箱から$2$枚のカードを同時に選び,小さいほうの数を$X$とする.これらのカードを箱に戻して,再び$2$枚のカードを同時に選び,小さいほうの数を$Y$とする.$X=Y$である確率を求めよ.
(2)定積分$\displaystyle\int_{0}^{\frac{1}{2}}(x+1)\sqrt{1-2x^2}\, dx$を求めよ.
京都大学 国立 京都大学 2011年 第5問
$xyz$空間で,原点$\mathrm{O}$を中心とする半径$\sqrt{6}$の球面$S$と$3$点$(4,\ 0,\ 0)$,$(0,\ 4,\ 0)$,$(0,\ 0,\ 4)$を通る平面$\alpha$が共有点を持つことを示し,点$(x,\ y,\ z)$がその共有点全体の集合を動くとき,積$xyz$が取り得る値の範囲を求めよ.
京都大学 国立 京都大学 2011年 第2問
四面体$\mathrm{OABC}$において.点$\mathrm{O}$から$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を含む平面に下ろした垂線とその平面の交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}\perp \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OB}}\perp \overrightarrow{\mathrm{OC}}, |\overrightarrow{\mathrm{OA}}|=2, |\overrightarrow{\mathrm{OB}}|=|\overrightarrow{\mathrm{OC}}|=3, |\overrightarrow{\mathrm{AB}}|=\sqrt{7}$のとき,$|\overrightarrow{\mathrm{OH}}|$を求めよ.
東京大学 国立 東京大学 2011年 第2問
実数$x$の小数部分を,$0 \leqq y<1$かつ$x-y$が整数となる実数$y$のこととし,これを記号$\langle x \rangle$で表す.実数$a$に対して,無限数列$\{a_n\}$の各項$a_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように順次定める.
\[ a_1=\langle a\rangle \]
\[
\left\{
\begin{array}{l}
a_n \neq 0 \text{のとき,} \quad a_{n+1}= \displaystyle \left\langle \frac{1}{a} \right\rangle \\
a_n = 0 \text{のとき,} \quad a_{n+1}=0
\end{array}
\right.
\]

(1)$a=\sqrt{2}$のとき,数列$\{a_n\}$を求めよ.
(2)任意の自然数$n$に対して$a_n=a$となるような$\displaystyle \frac{1}{3}$以上の実数$a$をすべて求めよ.
東京大学 国立 東京大学 2011年 第2問
実数$x$の小数部分を,$0 \leqq y<1$かつ$x-y$が整数となる実数$y$のこととし,これを記号$\langle x \rangle$で表す.実数$a$に対して,無限数列$\{a_n\}$の各項$a_n \ (n=1,\ 2,\ 3,\ \cdots)$を次のように順次定める.
\[ a_1=\langle a\rangle \]
\[
\left\{
\begin{array}{l}
a_n \neq 0 \text{のとき,} \quad a_{n+1}= \displaystyle \left\langle \frac{1}{a} \right\rangle \\
a_n = 0 \text{のとき,} \quad a_{n+1}=0
\end{array}
\right.
\]

(1)$a=\sqrt{2}$のとき,数列$\{a_n\}$を求めよ.
(2)任意の自然数$n$に対して$a_n=a$となるような$\displaystyle \frac{1}{3}$以上の実数$a$をすべて求めよ.
(3)$a$が有理数であるとする.$a$を整数$p$と自然数$q$を用いて$\displaystyle a=\frac{p}{q}$と表すとき,$q$以上のすべての自然数$n$に対して,$a_n=0$であることを示せ.
一橋大学 国立 一橋大学 2011年 第4問
$a,\ b,\ c$を正の定数とする.空間内に3点A$(a,\ 0,\ 0)$,B$(0,\ b,\ 0)$,C$(0,\ 0,\ c)$がある.

(1)辺ABを底辺とするとき,$\triangle$ABCの高さを$a,\ b,\ c$で表せ.
(2)$\triangle$ABC,$\triangle$OAB,$\triangle$OBC,$\triangle$OCAの面積をそれぞれ$S,\ S_1,\ S_2,\ S_3$とする.ただし,Oは原点である.このとき,不等式
\[ \sqrt{3}S \geqq S_1 +S_2+S_3 \]
が成り立つことを示せ.
(3)(2)の不等式において等号が成り立つための条件を求めよ.
神戸大学 国立 神戸大学 2011年 第1問
$i=\sqrt{-1}$とする.以下の問に答えよ.

(1)実数$\alpha,\ \beta$について,等式
\[ (\cos \alpha + i\sin \alpha)(\cos \beta + i\sin \beta) = \cos(\alpha+\beta)+i\sin (\alpha+\beta) \]
が成り立つことを示せ.
(2)自然数$n$に対して,
\[ z=\sum_{k=1}^n \left( \cos \frac{2\pi k}{n}+ i \sin \frac{2\pi k}{n} \right) \]
とおくとき,等式
\[ z \left(\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \right) = z \]
が成り立つことを示せ.
(3)2以上の自然数$n$について,等式
\[ \sum_{k=1}^n \cos \frac{2\pi k}{n} = \sum_{k=1}^n \sin \frac{2\pi k}{n} = 0 \]
が成り立つことを示せ.
九州大学 国立 九州大学 2011年 第1問
曲線$y=\sqrt{x}$上の点$\mathrm{P}(t,\ \sqrt{t})$から直線$y=x$へ垂線を引き,交点を$\mathrm{H}$とする.ただし,$t>1$とする.このとき,以下の問いに答えよ.

(1)$\mathrm{H}$の座標を$t$を用いて表せ.
(2)$x \geqq 1$の範囲において,曲線$y=\sqrt{x}$と直線$y=x$および線分$\mathrm{PH}$とで囲まれた図形の面積を$S_1$とするとき,$S_1$を$t$を用いて表せ.
(3)曲線$y=\sqrt{x}$と直線$y=x$で囲まれた図形の面積を$S_2$とすると,$S_1=S_2$であるとき,$t$の値を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。