タグ「根号」の検索結果

147ページ目:全1904問中1461問~1470問を表示)
兵庫県立大学 公立 兵庫県立大学 2012年 第4問
$xy$平面上の点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$,$\mathrm{P}(x,\ y)$に対して,ベクトル$\overrightarrow{a}$,$\overrightarrow{b}$を各々$\overrightarrow{a}=\overrightarrow{\mathrm{AP}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{BP}}$と定める.次の問に答えなさい.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$x,\ y$を用いて表しなさい.

(2)$\displaystyle \frac{x^2+y^2-1}{\sqrt{(x-1)^2+y^2}\sqrt{(x+1)^2+y^2}}=\frac{1}{\sqrt{2}}$を満たす点$(x,\ y)$全体の集合を図示しなさい.
九州歯科大学 公立 九州歯科大学 2012年 第1問
次の問いに答えよ.

(1)原点$\mathrm{O}$を中心とし,${150}^\circ$だけ回転すると,点$\mathrm{P}(x,\ y)$が点$(7,\ \sqrt{3})$に移った.$x$と$y$の値を求めよ.
(2)$x \geqq 0$と自然数$n$に対して,$2$つの曲線$y=\sqrt{x}$と$y=x^n \sqrt{x}$で囲まれる図形の面積を$S_1$とする.一方,曲線$y=\sqrt{x}$と直線$y=x$で囲まれる図形の面積を$S_2$とする.$7S_1=24S_2$をみたす$n$の値を求めよ.
(3)さいころを$3$回続けて投げたとき,第$3$回目に出た目の数が第$1$回目と第$2$回目に出た目の数のいずれよりも大きくなる確率$P$を求めよ.また,第$3$回目に出た目の数が第$1$回目と第$2$回目に出た目の数の積となる確率$Q$を求めよ.
(4)$\cos \theta=\sin^2 \theta$のとき,$\alpha=(1+\cos \theta)\cos \theta$と$\beta=\sin^8 \theta+2 \sin^6 \theta+3 \sin^4 \theta+2 \sin^2 \theta$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第3問
曲線$C_1:y^2=4px$と$C_2:x^2-y^2=-q$(ただし,$p>0$,$q>0$)の二つの曲線が接するとき,次の問いに答えよ.

(1)$q$を$p$を用いて表せ.また接点の座標を$p$を用いて表せ.
(2)$\sqrt{x^2+q}+x=t$と置いたとき$x$を$t$で表せ.また不定積分$\displaystyle I=\int \sqrt{x^2+q} \, dx$を$x$から$t$への置換積分により,$t$の関数として求めよ.
(3)曲線$C_1$,$C_2$と$y$軸で囲まれた部分の面積を$p$で表せ.
名古屋市立大学 公立 名古屋市立大学 2012年 第2問
座標空間における点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2 \sqrt{2},\ 0,\ 0)$,$\mathrm{B}(2 \sqrt{2},\ 1,\ 0)$,$\mathrm{C}(0,\ 1,\ 0)$,$\mathrm{D}(0,\ 0,\ 1)$,$\mathrm{E}(2 \sqrt{2},\ 0,\ 1)$,$\mathrm{F}(2 \sqrt{2},\ 1,\ 1)$,$\mathrm{G}(0,\ 1,\ 1)$を頂点とする直方体$\mathrm{OABC}$-$\mathrm{DEFG}$について,直線$\mathrm{FG}$上の点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)点$\mathrm{P}$が線分$\mathrm{FG}$の中点であるとき,$\angle \mathrm{OPA}$を求めよ.
(2)点$\mathrm{G}$と点$\mathrm{A}$を通る直線$\ell$と原点$\mathrm{O}$との距離$d$を求めよ.
(3)点$\mathrm{O}$と点$\mathrm{P}$を通る直線$m$と$xy$平面のなす角を$\theta$とするとき,$\theta=15^\circ$,$\theta=30^\circ$を満たす点$\mathrm{P}$の座標をそれぞれ求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第4問
$xy$平面上において,原点$\mathrm{O}$を中心とする正六角形$\mathrm{ABCDEF}$の$3$つの頂点の座標が,$\mathrm{A}(0,\ 2)$,$\mathrm{B}(\sqrt{3},\ 1)$,$\mathrm{C}(\sqrt{3},\ -1)$であるとき,次の問いに答えよ.

(1)辺$\mathrm{CD}$の中点を$\mathrm{L}$,線分$\mathrm{AL}$の中点を$\mathrm{M}$とし,直線$\mathrm{FM}$と辺$\mathrm{BC}$の交点を$\mathrm{N}$とする.$\mathrm{FM}:\mathrm{MN}$,$\mathrm{BN}:\mathrm{NC}$の比の値をそれぞれ求めよ.
(2)$|\overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{FP}}|=|\overrightarrow{\mathrm{BF}}|$を満たす点$\mathrm{P}$の描く図形の方程式を求めよ.
(3)$\mathrm{BF}$上の点$\mathrm{Q}(q,\ 1)$が$-\sqrt{3} \leqq q \leqq \sqrt{3}$を満たす任意の点であるとき,$\triangle \mathrm{QCE}$の垂心$\mathrm{H}$の描く図形の方程式を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第3問
実数$t$を$0<t \leqq 1$とし,図$1$の斜線部分の図形$A$の面積を$S(t)$で表す.次の問に答えなさい.

(1)$S(t)$を$t$の式で表しなさい.
(2)図$2$,図$3$を参考にして,不等式
\[ (1-\sqrt{t})^2 \leqq S(1)-S(t) \leqq (1-t)^2 \]
が成り立つことを示しなさい.
(3)(2)の不等式を参考にして,不等式
\[ 2(t-\sqrt{t}) \leqq t \log t \leqq t(t-1) \]
が成り立つことを示しなさい.
(図は省略)
岐阜薬科大学 公立 岐阜薬科大学 2012年 第6問
円$x^2+(y-a)^2=r^2$で囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積を$V(a)$とするとき,次の問いに答えよ.ただし,$a,\ r$は正の実数とする.

(1)$a \geqq r$のとき,$V(a)$を求めよ.
(2)$0<a<r$とする.

(i) $\displaystyle 0<\theta<\frac{\pi}{2}$のとき,$\sin \theta<\theta<\tan \theta$が成り立つ.このことを用いて,次の不等式が成り立つことを示せ.
\[ \frac{(r+a) \sqrt{r^2-a^2}}{2}<\int_0^{\sqrt{r^2-a^2}} \sqrt{r^2-x^2} \, dx<\frac{(r^2+a^2) \sqrt{r^2-a^2}}{2a} \]
(ii) $(ⅰ)$の結果を用いて,
\[ \frac{2\pi (a-r)(a+r) \sqrt{r^2-a^2}}{3}<V(a)-2\pi^2ar^2<\frac{2\pi (a-r)(a-2r) \sqrt{r^2-a^2}}{3} \]
が成り立つことを示せ.
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
北九州市立大学 公立 北九州市立大学 2012年 第3問
平面上で四角形$\mathrm{ABCD}$は円に内接し,$\mathrm{AB}=2 \sqrt{6}$,$\mathrm{AC}=\sqrt{6}(\sqrt{3}+1)$,$\mathrm{AD}=\sqrt{6}(\sqrt{3}-1)$,$\angle \mathrm{ADB}={45}^\circ$であるとする.以下の問いに答えよ.

(1)$\mathrm{BD}$を求めよ.
(2)$\mathrm{BC}$を求めよ.
(3)$\angle \mathrm{BCD}$を求めよ.
(4)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とするとき$\mathrm{BE}$を求めよ.
京都府立大学 公立 京都府立大学 2012年 第1問
$a,\ b$を実数とする.関数$\displaystyle f(x)=\frac{a^x-b^x}{\sqrt{5}}$は$f(1)=1$,$f(2)=1$を満たすとする.以下の問いに答えよ.

(1)$a,\ b$の値を求めよ.
(2)$f(2)+f(3)=f(4)$が成り立つことを示せ.
(3)$x$が自然数のとき,$f(x)$も自然数となることを示せ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。