タグ「根号」の検索結果

145ページ目:全1904問中1441問~1450問を表示)
安田女子大学 私立 安田女子大学 2012年 第3問
半径$1$の円$C$上にある点$\mathrm{P}$を通る直線$\ell$が,円$C$と点$\mathrm{P}$以外で交わる点を$\mathrm{Q}$とする.また,点$\mathrm{P}$で円$C$と接する直線を$m$とし,点$\mathrm{Q}$を通り直線$m$と垂直に交わる直線を$n$とする.さらに,直線$m$と直線$n$との交点を$\mathrm{R}$,円$C$と直線$n$とが点$\mathrm{Q}$以外で交わる点を$\mathrm{S}$とする.$\mathrm{PR}:\mathrm{RQ}=1:2$,$\displaystyle \mathrm{PQ}=\frac{4 \sqrt{5}}{5}$のとき,次の問いに答えよ.

(1)線分$\mathrm{RQ}$の長さを求めよ.
(2)$\triangle \mathrm{PSQ}$の面積を求めよ.
(3)直線$\ell$上に点$\mathrm{T}$をとる.そして,この点$\mathrm{T}$は,円$C$の外部に位置しているものとし,線分$\mathrm{TQ}$の長さは$\displaystyle \frac{\sqrt{5}}{4}$とする.また,点$\mathrm{T}$から円$C$に接線を引き,その接点を$\mathrm{U}$とする.このとき,線分$\mathrm{TU}$の長さを求めよ.
東京女子大学 私立 東京女子大学 2012年 第2問
$xy$平面上の円$C:x^2+(y-2)^2=1$において,$C$上の点$\mathrm{N}(0,\ 3)$に対し,$\mathrm{P}$は$C$上の$\mathrm{N}$と異なる点とする.また,直線$\mathrm{NP}$と$x$軸との交点を$\mathrm{Q}$とする.このとき,以下の設問に答えよ.

(1)実数$t$を用いて$\overrightarrow{\mathrm{NQ}}=t \overrightarrow{\mathrm{NP}}$と表したとき,$\overrightarrow{\mathrm{OQ}}$を$t$,$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{ON}}$を用いて表せ.ここで$\mathrm{O}$は原点を表す.
(2)$\mathrm{P}$の座標を$(a,\ b)$とおくとき,$\mathrm{Q}$の$x$座標を$a,\ b$を用いて表せ.
(3)$\mathrm{Q}$の座標が$(\sqrt{3},\ 0)$のとき,$\mathrm{P}$の座標を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第1問
次の数の大小を比べ,空欄に不等号を入れなさい.

(1)$\sqrt[3]{16} \ [ア] \sqrt[4]{32}$
(2)$\log_3 10 \ [イ] \log_9 90$
(3)$2 \ [ウ] \log_3 5+\log_5 3$
愛知学院大学 私立 愛知学院大学 2012年 第1問
$xy=1000$,$x \geqq 10$,$\displaystyle y \geqq \frac{1}{10}$とする.

(1)$\log_{10}x$は,$x=\kakkofive{ア}{イ}{ウ}{エ}{オ}$のとき最大値$[カ]$をとる.
(2)$\log_{10}x \cdot \log_{10}y$は
\[ x=[キ][ク] \sqrt{[ケ][コ]},\quad y=[サ][シ] \sqrt{[ス][セ]} \]
のときに最大値$\displaystyle \frac{[ソ]}{[タ]}$をとり,
\[ x=\kakkofive{チ}{ツ}{テ}{ト}{ナ},\quad y=\frac{[ニ]}{[ヌ][ネ]} \]
のときに最小値$[ノ][ハ]$をとる.
愛知学院大学 私立 愛知学院大学 2012年 第3問
三角形$\mathrm{ABC}$の角$\mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\mathrm{AB}=x$とおく.$\mathrm{BD}=3$,$\mathrm{CD}=2$のとき,
\[ \cos \angle \mathrm{B}=\frac{x^2+[ア][イ]}{[ウ][エ]x} \]
である.さらに$\mathrm{AD}=2$であるならば
\[ \cos \angle \mathrm{B}=\frac{[オ] \sqrt{[カ][キ]}}{[ク]} \]
である.
青森公立大学 公立 青森公立大学 2012年 第1問
次の[\phantom{ア]}に適する数または式を入れよ.\\
\quad 座標平面内に円$S:x^2+y^2=4$と,円$S$上に異なる2点A$(a,\ b)$,B$(c,\ d)$があり,$ad-bc \neq 0$を満たしている.\\
\quad 点Aにおける円$S$の接線$\ell$の方程式は,$ax+by=[ア]$である.点Bにおける円$S$の接線を$m$とおくと,2直線$\ell$と$m$の交点Pの$x$座標は,$a,\ b,\ c,\ d$を用いて[イ]である.ここで,点Pの座標をP$(p,\ q)$とおくと,直線ABの方程式は,$p,\ q$を用いて[ウ]となる.\\
\quad 次に$0 \leqq \theta \leqq \pi$のとき,$t = \sin \theta + \cos \theta$とおくと,$t$の値のとりうる範囲は[エ]である.また,$t$を用いて$\sin \theta \cos \theta = [オ]$と表せる.このとき,関数$z=2\sin \theta \cos \theta + \sqrt{2}\sin \theta + \sqrt{2} \cos \theta + 6$を$t$を用いて表すと,$z = [カ]$となる.$z$の最大値は[キ]であり,最小値は[ク]となる.最小値をとる$\theta$の値は[ケ]である.\\
\quad 交点P$(p,\ q)$が,原点Oを中心とし$z$の最大値を半径とする円の周上を動くように,2点A,Bが円$S$の周上を動くとき,直線ABが通らない範囲の面積は[コ]である.
大阪市立大学 公立 大阪市立大学 2012年 第4問
$|a^2 - 2b^2|=1$をみたす整数$a,\ b$によって,$\left( \begin{array}{cc}
a & 2b \\
b & a
\end{array} \right)$と表される2次の正方行列全体の集合を$U$とする.このとき,$U$に属する行列$A=\left( \begin{array}{cc}
a & 2b \\
b & a
\end{array} \right)$に対して,$f(A)=a+\sqrt{2}b$とおく.次の問いに答えよ.

(1)二つの行列$A$と$B$が$U$に属するならば,積$AB$も$U$に属することを示し,さらに$f(AB)=f(A)f(B)$が成り立つことを示せ.
(2)$U$に属する行列$A=\left( \begin{array}{cc}
a & 2b \\
b & a
\end{array} \right)$について,$f(A) \geqq 1$ならば,$-1 \leqq a-\sqrt{2}b \leqq 1$が成り立つことを示せ.
(3)$U$に属する行列$A$について,$1 \leqq f(A) < 1+\sqrt{2}$ならば,$A=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$であることを示せ.
(4)$U$に属する行列$A$について,$1+\sqrt{2} \leqq f(A) < (1+\sqrt{2})^2$ならば,$A=\left( \begin{array}{cc}
1 & 2 \\
1 & 1
\end{array} \right)$であることを示せ.
高知工科大学 公立 高知工科大学 2012年 第2問
$x$の$2$次方程式$x^2-2x-1=0$の解を$\alpha,\ \beta (\alpha < \beta)$とし,正の整数$n$に対して
\[ x_n = \frac{\beta^n - \alpha^n}{2\sqrt{2}} \]
とおく.次の各問に答えよ.

(1)$x_1,\ x_2$を求めよ.
(2)$x_{n+2}=2x_{n+1}+x_n$が成り立つことを証明せよ.
(3)$x_{3n}$は$5$の倍数であることを証明せよ.
高知工科大学 公立 高知工科大学 2012年 第1問
次の各問に答えよ.

(1)放物線$y=x^2-ax+3$の頂点が直線$y=3x+5$上にあるとき,定数$a$の値を求めよ.
(2)$\displaystyle \log_9\sqrt{2}+\frac{1}{2}\log_9 \frac{1}{3}-\frac{3}{2}\log_9 \sqrt[3]6$を簡単にせよ.
(3)曲線$y=\sqrt{x-1}$上の点$(2,\ 1)$における接線を$\ell$とする.この曲線と$x$軸および接線$\ell$で囲まれた部分の面積$S$を求めよ.
(4)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$が$A^2-4A+3E=O$を満たすとき,$a+d$の値を求めよ.ただし,$O$は零行列,$E$は単位行列である.
高知工科大学 公立 高知工科大学 2012年 第4問
$2$つの関数
\begin{eqnarray}
& & f(x)=\frac{\sin x}{1+\cos x} \quad (\text{定義域は}-\pi<x<\pi) \nonumber \\
& & g(x)=\int_0^x \frac{2}{1+t^2} \, dt \quad (\text{定義域は実数全体}) \nonumber
\end{eqnarray}
と,これらの合成関数$h(x)=g(f(x))$を考える.次の各問に答えよ.

(1)$f(x),\ g(x),\ h(x)$のそれぞれの導関数を求めよ.
(2)$h(x)$を求めよ.
(3)定積分$\displaystyle \int_0^{\frac{1}{2+\sqrt{3}}} \frac{2}{1+t^2} \, dt$の値を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。