タグ「根号」の検索結果

142ページ目:全1904問中1411問~1420問を表示)
近畿大学 私立 近畿大学 2012年 第2問
$\angle \mathrm{A}={30}^\circ$,$\mathrm{AB}=\mathrm{AC}=4$をみたす$\triangle \mathrm{ABC}$において,点$\mathrm{C}$を点$\mathrm{P}_1$として,$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_1$,辺$\mathrm{AC}$上に点$\mathrm{P}_2$をとる.次に,図のように,$\triangle \mathrm{P}_2 \mathrm{Q}_2 \mathrm{P}_3$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_2$,辺$\mathrm{AC}$上に点$\mathrm{P}_3$をとる.以下同様にして,$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_n$,辺$\mathrm{AC}$上に点$\mathrm{P}_{n+1}$をとる.($n=1,\ 2,\ 3,\ \cdots$)
(図は省略)

$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$の面積を$S_n$,$\triangle \mathrm{Q}_n \mathrm{P}_{n+1} \mathrm{Q}_{n+1}$の面積を$T_n$とする.

(1)$\mathrm{BC}$と$\mathrm{P}_1 \mathrm{P}_2$の長さを,二重根号を用いない形で求めよ.
(2)$S_1,\ T_1$の値を求めよ.
(3)$S_n$を$n$を用いて表せ.また,$\displaystyle S_n<\frac{1}{1000}$をみたす最小の$n$の値を求めよ.
(4)$T_n$を$n$を用いて表せ.また,和$\displaystyle \sum_{n=1}^5 T_n$の値を求めよ.
久留米大学 私立 久留米大学 2012年 第8問
次の計算をすると,$\displaystyle \lim_{x \to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}=[$20$]$となる.
中央大学 私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.

\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群

\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$

\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$

エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
中央大学 私立 中央大学 2012年 第2問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a$を$1$より大きい実数とする.$xy$平面において,$x$軸,$y$軸,直線$x=1$と曲線$y=a^x$で囲まれる部分の面積を近似的に計算したい.$n$を自然数とし,$k=1,\ 2,\ \cdots,\ n$とする.また,$f(x)$は$0 \leqq x \leqq 1$において$f(x)>0$を満たす連続関数とする.

(1)$4$点$\displaystyle \left( \frac{k-1}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ 0 \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$,$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$を頂点にもつ台形の面積を$M_k$とする.このとき$M_k=[キ]$となる.とくに$f(x)=a^x$であれば,面積の和$S_n=M_1+M_2+\cdots +M_n$は$[ク]$となる.ここで,極限$\displaystyle \lim_{x \to 0} \frac{a^x-1}{x}=[ケ]$を用いると,$\displaystyle \lim_{n \to \infty} S_n=[コ]$と計算される.
(2)以下では,曲線$y=f(x)$は下に凸とする.
$3$点$\displaystyle \left( \frac{k-1}{n},\ f \left( \frac{k-1}{n} \right) \right)$,$\displaystyle \left( \frac{2k-1}{2n},\ f \left( \frac{2k-1}{2n} \right) \right)$,$\displaystyle \left( \frac{k}{n},\ f \left( \frac{k}{n} \right) \right)$を通る放物線を
\[ C_k:y=\alpha \left( x-\frac{2k-1}{2n} \right)^2+\beta \left( x-\frac{2k-1}{2n} \right)+\gamma \quad (\alpha,\ \beta,\ \gamma \text{は定数}) \]
とおく.$x$軸,直線$\displaystyle x=\frac{k-1}{n}$,直線$\displaystyle x=\frac{k}{n}$と放物線$C_k$で囲まれる部分の面積を$N_k$とおくとき,$N_k=[サ]$となる.とくに$f(x)=a^x$であれば,面積の和$N_1+N_2+\cdots N_n$は$[シ]$となる.
\begin{itemize}
ケ,コの解答群
\[ \begin{array}{lllll}
\marua e^a \phantom{AA} & \marub e^{-a} \phantom{AA} & \maruc \displaystyle\frac{e^a}{a-1} \phantom{AA} & \marud (a-1)e^a \phantom{AA} & \marue (a-1)e^{-a} \\ \\
\maruf \log a & \marug \displaystyle\frac{1}{\log a} & \maruh \displaystyle\frac{\log a}{a-1} & \marui \displaystyle\frac{a-1}{\log a} & \maruj (a-1) \log a
\end{array} \]
キ,サの解答群

\mon[$\marua$] $\displaystyle \frac{1}{n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marub$] $\displaystyle \frac{1}{2n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruc$] $\displaystyle \frac{1}{3n} \left\{ f \left( \frac{k-1}{n} \right)+f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marud$] $\displaystyle \frac{1}{4n} \left\{ f \left( \frac{k-1}{n} \right)+2f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\marue$] $\displaystyle \frac{1}{5n} \left\{ f \left( \frac{k-1}{n} \right)+3f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

\mon[$\maruf$] $\displaystyle \frac{1}{6n} \left\{ f \left( \frac{k-1}{n} \right)+4f \left( \frac{2k-1}{2n} \right)+f \left( \frac{k}{n} \right) \right\}$

ク,シの解答群
\[ \begin{array}{ll}
\marua \displaystyle\frac{(a^n-1) \sqrt{a}}{n(a-1)} \phantom{AA} & \marub \displaystyle\frac{a^{\frac{1}{2n}}(a-1)}{n(a^{\frac{1}{n}}-1)} \\ \\
\maruc \displaystyle\frac{(a+1)(a^n-1)}{n(a-1)} \phantom{AA} & \marud \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} \\ \\
\marue \displaystyle\frac{(a+1)(a^n-1)}{2n(a-1)} & \maruf \displaystyle\frac{(a^{\frac{1}{n}}+1)(a-1)}{2n(a^{\frac{1}{n}}-1)} \\ \\
\marug \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{n(a^\frac{1}{n}-1)} & \maruh \displaystyle\frac{(a^{\frac{1}{n}}+a^{\frac{1}{2n}}+1)(a-1)}{3n(a^\frac{1}{n}-1)} \\ \\
\marui \displaystyle\frac{(a^{\frac{1}{n}}+2a^{\frac{1}{2n}}+1)(a-1)}{4n(a^\frac{1}{n}-1)} & \maruj \displaystyle\frac{(a+3 \sqrt{a}+1)(a^n-1)}{5n(a-1)} \\ \\
\maruk \displaystyle\frac{(a^{\frac{1}{n}}+4a^{\frac{1}{2n}}+1)(a-1)}{6n(a^\frac{1}{n}-1)} &
\end{array} \]
\end{itemize}
大阪歯科大学 私立 大阪歯科大学 2012年 第1問
以下の$[ ]$に入る適切な数値を解答欄に記せ.

(1)$p$を正の実数とする.$2$次方程式$x^2-px+24=0$の$2$つの解の差が$5$であるとき,$p=[ ]$である.
(2)$3^{2012}-2012^3$の$1$の位の数は$[ ]$である.
(3)$\displaystyle \frac{1}{2} \left\{ \left( \frac{1+\sqrt{5}}{2} \right)^3 -\left( \frac{1-\sqrt{5}}{2} \right)^3 \right\}=[ ]$である.
(4)$\displaystyle \int_{-1}^3 (x^2-3x+1) \, dx-\int_1^3 (x^2-3x+1) \, dx=[ ]$である.
吉備国際大学 私立 吉備国際大学 2012年 第1問
次の( \quad )を埋めよ.

(1)大のサイコロの目を百の位の数に,中のサイコロの目を十の位の数に,小のサイコロの目を一の位の数とするとき,できた$3$桁の整数が$4$の倍数になる確率は$( ① )$となる.
(2)$(\sqrt{3}+\sqrt{5}+\sqrt{7})(\sqrt{3}+\sqrt{5}-\sqrt{7})$を計算すると$( ② )$である.
(3)$\triangle \mathrm{ABC}$において$3$辺がそれぞれ$\mathrm{AB}=9$,$\mathrm{BC}=17$,$\mathrm{CA}=10$とするときこの三角形の面積は$( ③ )$である.
(4)$(a+b)^{12}$を展開したとき$a^7 b^5$の係数は$( ④ )$である.
(5)点$\mathrm{P}$が線分$\mathrm{AB}$を$7:5$に外分するとき$\mathrm{AB}:\mathrm{BP}=( ⑤ )$である.
北海道科学大学 私立 北海道科学大学 2012年 第1問
$\displaystyle a=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}},\ b=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$のとき$a+b=[$1$]$であり,$a^2+b^2=[$2$]$である.
北海道科学大学 私立 北海道科学大学 2012年 第6問
図において$\mathrm{AD}=\sqrt{7}$,$\mathrm{AC}=\sqrt{3}$,$\displaystyle \mathrm{BC}=\frac{4 \sqrt{3}}{5}$,$\angle \mathrm{BCA}={60}^\circ$,$\angle \mathrm{DCA}={90}^\circ$とする.このとき$\sin \angle \mathrm{CAB}=[$1$]$であり,$\mathrm{AB}=[$2$]$である.
(図は省略)
北海道科学大学 私立 北海道科学大学 2012年 第7問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=\sqrt{7}$,$\mathrm{CA}=2 \sqrt{3}$のとき,$\angle \mathrm{A}=[$1$]$である.また,この三角形の面積は$[$2$]$である.
大同大学 私立 大同大学 2012年 第7問
$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}=10$をみたす二等辺三角形$\mathrm{ABC}$の内心を$\mathrm{I}$,内接円の半径を$\sqrt{5}$とする.

(1)線分$\mathrm{BI}$の長さを求めよ.
(2)点$\mathrm{P}$を$\mathrm{BP}=\mathrm{BI}$,$\mathrm{IP}=2 \sqrt{5}$をみたすようにとる.$\cos \angle \mathrm{IBP}$の値を求めよ.
(3)辺$\mathrm{AB}$の長さを求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。