タグ「根号」の検索結果

128ページ目:全1904問中1271問~1280問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
ある企業が毎年$x$リットルの液体製品を製造している.生産するための総費用を$c$,設備の規模を$k$とする.製品1リットルの価格を$p$とし
\[ c= 0.01x^3+0.8x^2+(4-k)x+5k^2 \]
が成り立つとする.このとき利潤は$px-c$である.

(1)$p=15,\ k=1$のとき,$x$が
\[ \frac{[(9)][(10)]}{[(11)][(12)]} \]
のとき利潤は最大となる.
(2)生産量$x$を変えずに,設備の規模$k$を変えて総費用$c$を最小化することを考えると
\[ k=\frac{[(13)][(14)]}{[(15)][(16)]} x \]
である.
(3)$p=19$とし,$k$と$x$は(2)で求めた関係式を満たすとする.このとき$x$が
\[ [(17)][(18)][(19)]+[(20)][(21)]\sqrt{[(22)]} \]
のとき利潤は最大となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
曲線上の点$\mathrm{P}$を通り,$\mathrm{P}$におけるこの曲線の接線$\ell$と直交する直線$m$をこの曲線の法線とよぶ.$a,\ b>0$とし,$2$次曲線$x^2 = 4a(y+b)$の法線が$(0,\ 2a)$を通るとき,接点$\mathrm{P}(p,\ q)$は
\[ p^2 = [(41)]ab, \quad q= [(42)] \]
をみたす.したがって条件をみたす接線と法線の組$(\ell,\ m)$は$2$組ある.この$4$本の直線で囲まれる$4$角形$S$の面積は$[(43)][(44)](a+b)\sqrt{ab}$である.また$2$本の法線と$2$次曲線で囲まれる部分で$S$に含まれる部分の面積は
\[ \left( \frac{[(45)][(46)]a+[(47)][(48)]b}{[49]} \right) \sqrt{ab} \]
である.
早稲田大学 私立 早稲田大学 2012年 第2問
空間に点$\mathrm{O}$と三角錐$\mathrm{ABCD}$があり,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=1,\ \mathrm{OD}=\sqrt{5}$,$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}$,$\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{0}}$をみたしている.三角錐$\mathrm{ABCD}$に内接する球の半径を求めよ.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えよ.

(1)$0 \leqq x \leqq \pi$において
\[ y= \sin x + 2 \cos \left( x - \frac{\pi}{6} \right) \]
の最大値は$\sqrt{[ア]}$であり,最小値は$-\sqrt{[イ]}$である.
(2)$xy = 4x -y+28$を満たす正の整数$x,\ y$の組$(x,\ y)$は全部で[ウ]組ある.
(3)放物線$y=\displaystyle\frac{1}{2}x^2$は,$x$軸方向に[エ],$y$軸方向に$\displaystyle\frac{[オ]}{[カ]}$だけ平行移動すると,直線$y=-x$と直線$y=3x$の両方に接する.
(4)実数$x,\ y$が$x^2+xy+2y^2=1$を満たすとき,$y^2$がとり得る値の範囲は
\[ [キ] \leqq y^2 \leqq \frac{[ク]}{[ケ]} \]
である.
東京理科大学 私立 東京理科大学 2012年 第4問
関数$f(x)$を
\[ f(x) = \frac{\sqrt{2}}{6}x^3 + \frac{9}{2} \]
と定める.さらに,$\mathrm{O}$を原点とする座標平面上の曲線$C:y=f(x)$を考える.

(1)曲線$C$上の点$(2,\ f(2))$における接線を$\ell_1$とおく.直線$\ell_1$の方程式を求めよ.
(2)$\ell_1$を(1)で定めた直線とする.曲線$C$と直線$\ell_1$は点$(2,\ f(2))$以外にもう$1$つ共有点をもつ.その共有点の$x$座標を求めよ.
(3)$m$を実数とし,原点$\mathrm{O}$を通る直線$\ell_2:y=mx$を考える.曲線$C$と直線$\ell_2$が共有点をちょうど$2$個もつときの$m$の値を求めよ.
明治大学 私立 明治大学 2012年 第3問
円に内接する$4$角形$\mathrm{ABCD}$について,$\mathrm{AB}=a$,$\mathrm{BC}=b$,$\mathrm{CD}=c$,$\mathrm{AD}=d$とおくとき,次の問に答えよ.

(1)$a^2+b^2=c^2+d^2$であるための必要十分条件が,$\angle \mathrm{B} = \angle \mathrm{D}$である事を証明せよ.
(2)$\displaystyle a=\frac{\sqrt{2}}{3},\ b=\frac{\sqrt{7}}{3},\ c=\frac{\sqrt{5}}{3},\ d=\frac{2}{3}$とするとき,$\cos (\angle \mathrm{A} - \angle \mathrm{C})$を求めよ.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えなさい.

(1)関数
\[ f(x) = 2\sqrt{3}\,\sin^2\frac{x}{2}-\sin x+a \quad (0 \leqq x \leqq \pi) \]
の最小値が$\sqrt{3}$であるとする.このとき,$a=[ア]$であり,$f(x)$が最小となるのは$x=\displaystyle\frac{\pi}{[イ]}$のときである.
(2) $n$を$5$以上の自然数とする.$1$以上$n$以下の自然数から互いに隣り合わない$2$つを選ぶ組合せは
\[ \frac{1}{[ウ]} \left( n- [エ]\right) \left( n- [オ] \right) \]
通りあり,どの$2$つも隣り合わない$3$つを選ぶ組合せは
\[ \frac{1}{[カ]} \left( n- [キ]\right) \left( n- [ク] \right) \left( n- [ケ] \right) \]
通りある.ただし,$[エ] < [オ], \quad [キ] < [ク] < [ケ]$とする.
(3)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$4:3$に内分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\mathrm{AP}:\mathrm{PD}=s:(1-s)$,$\mathrm{BP}:\mathrm{PC}=t:(1-t)$とするとき
\[ \displaystyle s=\frac{[コ]}{[サ]}, \quad t=\frac{[シ]}{[ス]} \]
である.また,$\mathrm{OP}$の延長と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき
\[ \overrightarrow{\mathrm{OQ}} = \frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OP}} \]
である.
上智大学 私立 上智大学 2012年 第2問
$\triangle \mathrm{ABC}$において, $\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CA}=5$とする.$\triangle \mathrm{ABC}$の外心を$\mathrm{P}$,内心を$\mathrm{Q}$とおく.

(1)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle\frac{[コ]}{[サ]}\sqrt{[シ]}$である.
(2)$\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle\frac{[ス]}{[セ]}\sqrt{[ソ]}$である.
(3)$\angle \mathrm{PAB}=\alpha$ とおくとき,$\cos \alpha = \displaystyle\frac{[タ]}{[チ]}\sqrt{[ツ]}$である.
(4)$\angle \mathrm{QAB}=\beta$ とおくとき,$\cos \beta = \displaystyle\frac{[テ]}{[ト]}$である.
(5)$\mathrm{AQ}=$[ナ]である.
(6)$\mathrm{PQ}= \displaystyle \frac{[ニ]}{[ヌ]}\sqrt{[ネ]}$である.
東京理科大学 私立 東京理科大学 2012年 第1問
$a=\sqrt{7}+\sqrt{5},\ b=\sqrt{7}-\sqrt{5}$とおく.

(1)$\displaystyle \frac{b}{a}=[ア]-\sqrt{[イウ]}$,$\displaystyle \frac{a}{b} = [エ]+\sqrt{[オカ]}$である.

(2)$\displaystyle \frac{b}{a},\ \frac{a}{b}$を解にもつ$2$次方程式は$x^2-[キク]x+[ケ]=0$と書くことができる.
(3)$A=\left( \begin{array}{cc}
a & -b \\
\displaystyle\frac{1}{a} & \displaystyle\frac{1}{b}
\end{array} \right)$とおくとき,$A$の逆行列$A^{-1}$は
\[ A^{-1}=\left( \begin{array}{rr}
\displaystyle\frac{\sqrt{7}}{[コサ]}+\frac{\sqrt{5}}{[シス]} & \displaystyle\frac{\sqrt{7}}{[セソ]}-\frac{\sqrt{5}}{[タチ]} \\ \\
-\displaystyle\frac{\sqrt{7}}{[ツテ]}+\frac{\sqrt{5}}{[トナ]} & \displaystyle\frac{\sqrt{7}}{[ニヌ]}+\frac{\sqrt{5}}{[ネノ]}
\end{array} \right) \]
東京理科大学 私立 東京理科大学 2012年 第2問
$2$つの関数
\[ x=g(\theta)=\frac{9}{4}\sin 2\theta, \quad y=h(x)=\log x \]
に対して,関数$g(\theta)$と関数$h(x)$の合成関数
\[ f(\theta) = h(g(\theta)) \]
を考える.ただし,対数は自然対数とする.

(1)$\displaystyle f\left( \frac{\pi}{3} \right) = -[ア]\log 2 + \frac{[イ]}{[ウ]}\log 3$である.

(2)実数$\theta_1$が$\displaystyle \sin \theta_1+\cos \theta_1 = \frac{\sqrt{82}}{8}$を満たすとき,
\[ f(\theta_1) = - [エ] \log 2 + [オ]\log 3 \]
である.
(3)$f(\theta)$の$\displaystyle\theta=\frac{\pi}{8},\ \theta=\frac{\pi}{12}$における微分係数はそれぞれ
\[ f^{\; \prime} \left( \frac{\pi}{8} \right) = [カ], \quad f^{\; \prime} \left(\frac{\pi}{12}\right) = [キ]\sqrt{[ク]} \]
となる.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。