タグ「根号」の検索結果

125ページ目:全1904問中1241問~1250問を表示)
茨城大学 国立 茨城大学 2012年 第2問
すべての実数$t$に対して関数$f(t),\ g(t)$を$f(t)=e^t-e^{-t},\ g(t)=e^t+e^{-t}$と定義する.ただし,$e$は自然対数の底とする.次の各問に答えよ.

(1)すべての$t$に対して$g(t) \geqq 2$であることを示せ.
(2)$f(t)$は単調増加であることを示せ.
(3)$x=f(t),\ s=e^t$とするとき,$s$を$x$を用いて表せ.
(4)$x=f(t)$の逆関数$t=f^{-1}(x)$を求めよ.
(5)不定積分$\displaystyle \int \frac{1}{\sqrt{x^2+4}} \, dx$を$x=f(t)$と置換積分して求めよ.
(6)座標平面上で$t$を媒介変数とする曲線$x=f(t),\ y=g(t)$を考える.この曲線を,媒介変数$t$を消去して$x,\ y$に関する方程式で表せ.
東京農工大学 国立 東京農工大学 2012年 第2問
空間のベクトル$\overrightarrow{a},\ \overrightarrow{p},\ \overrightarrow{q}$を
\[ \overrightarrow{a}=\left( \frac{1}{2},\ \frac{\sqrt{3}}{2},\ 0 \right),\quad \overrightarrow{p}=\left( 1,\ \frac{\sqrt{3}}{3},\ 1 \right),\quad \overrightarrow{q}=(-1,\ \sqrt{3},\ 2) \]
で定める.また$\alpha=\overrightarrow{p} \cdot \overrightarrow{a},\ \beta=\overrightarrow{q} \cdot \overrightarrow{a}$とおく.次の問いに答えよ.

(1)$\overrightarrow{b}=\overrightarrow{p}-\alpha \overrightarrow{a}$とする.$\overrightarrow{b}$を成分で表せ.
(2)$\displaystyle \overrightarrow{c}=\overrightarrow{q}-\beta \overrightarrow{a}-\frac{\overrightarrow{q} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b}$とする.$\overrightarrow{c}$を成分で表せ.
(3)座標空間の原点を$\mathrm{O}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$となる3点$\mathrm{A},\ \mathrm{B},\ \mathrm{C}$に対して,四面体$\mathrm{OABC}$の体積$V$を求めよ.
東京農工大学 国立 東京農工大学 2012年 第3問
区間$1 \leqq x \leqq 4$で定められた関数$\displaystyle f(x)=\sqrt{4x-x^2},\ g(x)=\sqrt{x \log \frac{4}{x}}$について,次の問いに答えよ.ただし対数は自然対数とする.

(1)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた部分を,$x$軸の周りに1回転させてできる回転体の体積$V$を求めよ.
(2)区間$1 \leqq x \leqq 4$において$\{f(x)\}^2-\{g(x)\}^2 \geqq 0$が成り立つことを示せ.
(3)2つの曲線$y=f(x),\ y=g(x)$と直線$x=1$で囲まれた部分を$D$とおく.$D$を$x$軸の周りに1回転させてできる回転体の体積$W$を求めよ.
福井大学 国立 福井大学 2012年 第3問
$t$を$0 \leqq t \leqq \sqrt{3}$をみたす実数とし,座標空間内に点$\mathrm{P}(t,\ 0,\ \sqrt{3-t^2})$をとる.$\mathrm{P}$を通り$yz$平面に平行な平面を$\beta$とおく.3点$\mathrm{D}(0,\ 1,\ 0)$,$\mathrm{E}(0,\ -1,\ 0)$,$\mathrm{F}(-\sqrt{3},\ 0,\ 0)$に対し,$\beta$と直線$\mathrm{FD}$との交点を$\mathrm{Q}$,$\beta$と直線$\mathrm{FE}$との交点を$\mathrm{R}$とする.$\triangle \mathrm{PQR}$の面積を$S(t)$とおくとき,以下の問いに答えよ.ただし,$S(\sqrt{3})=0$とする.

(1)$S(t)$を$t$を用いて表せ.
(2)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$S(t)$の最大値を求めよ.
(3)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$\triangle \mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
福井大学 国立 福井大学 2012年 第1問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
山形大学 国立 山形大学 2012年 第3問
$n$を自然数とする.このとき,次の問に答えよ.

(1)$\displaystyle \lim_{n \to \infty}\frac{1}{n^3}\sum_{k=1}^n k^2$を求めよ.
(2)$0<r<1$とし,$S_n=1+2r+3r^2+\cdots +nr^{n-1}$とおく.

(i) $S_n-rS_n$を求めよ.
(ii) $\displaystyle \lim_{n \to \infty}\frac{1}{n}S_n$を求めよ.

(3)$a>0,\ b>0$に対して,不等式
\[ a+b-\sqrt{ab}<\sqrt{a^2+b^2}<a+b \]
が成り立つことを証明せよ.
(4)$\displaystyle \lim_{n \to \infty}\sum_{k=1}^n \sqrt{\displaystyle\frac{1}{3^{2(k-1)}}+\frac{k^4}{n^6}}$を求めよ.
山形大学 国立 山形大学 2012年 第4問
2次正方行列
\[ A=\left( \begin{array}{cc}
\displaystyle\frac{1+3 \sqrt{3}}{2} & -\sqrt{3} \\
\displaystyle\frac{5 \sqrt{3}}{2} & \displaystyle\frac{1-3 \sqrt{3}}{2}
\end{array} \right),\quad B=\left( \begin{array}{cc}
1 & 1 \\
2 & 1
\end{array} \right) \]
について,次の問に答えよ.

(1)$A,\ B$は逆行列をもつことを示し,$A^{-1},\ B^{-1}$を求めよ.
(2)$B^{-1}A^{-1}B,\ (B^{-1}A^{-1}B)^3$を求めよ.
(3)$A^7BX=B$をみたす2次正方行列$X$を求めよ.
(4)(3)の行列$X$について
\[ E+X^5+X^{10}+X^{15}+X^{20}+X^{25}=O \]
が成り立つことを示せ.ただし$E$は2次の単位行列,$O$は零行列とする.
宮城教育大学 国立 宮城教育大学 2012年 第5問
$I(a)$を
\[ I(a)=\int_{-1}^1 |x^2-a| \, dx \]
で定義する.このとき次の問いに答えよ.

(1)$a \leqq 0$のとき$I(a)$の最小値を求めよ.
(2)$a \geqq 1$のとき$I(a)$の最小値を求めよ.
(3)$0<a<1$のとき,$t=\sqrt{a}$とおいて$I(a)$を$t$で表し,$I(a)$の最小値を求めよ.
山形大学 国立 山形大学 2012年 第3問
正の整数からなる数列$\{a_n\}$が$n=1,\ 2,\ 3,\ \cdots$に対して
\[ n \left( \frac{1}{a_n}+\frac{1}{a_{n+1}} \right)<2,\quad 2+\frac{1}{a_{n+1}}<(n+1) \left( \frac{1}{a_n}+\frac{1}{a_{n+1}} \right) \]
を満たし,かつ$a_2=2$とする.このとき,次の問に答えよ.

(1)$a_1$を求めよ.
(2)$a_3$を求めよ.
(3)一般項$a_n$を推定し,それが正しいことを証明せよ.
(4)$\displaystyle \sum_{k=1}^n \frac{1}{\sqrt{a_{k+1}}+\sqrt{a_k}}$を求めよ.
長崎大学 国立 長崎大学 2012年 第6問
次の問いに答えよ.

(1)$\displaystyle I_1=\int_0^{\sqrt{3}} \frac{dx}{x^2+1}$とする.$x=\tan \theta$とおくことにより,$\displaystyle I_1=\frac{\pi}{3}$を示せ.
(2)(1)の$I_1$を部分積分して,$I_1$と$\displaystyle I_2=\int_0^{\sqrt{3}}\frac{dx}{(x^2+1)^2}$の関係式を導き,$I_2$の値を求めよ.
(3)$t=x+\sqrt{x^2+1}$とおくことにより,不定積分$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
(4)合成関数の微分法を用いて,関数$y=\log (x+\sqrt{x^2+1})$の導関数を求めよ.
(5)極限値$\displaystyle \lim_{n \to \infty} \left\{ \frac{1}{\sqrt{n^2+1^2}}+\frac{1}{\sqrt{n^2+2^2}}+\cdots +\frac{1}{\sqrt{n^2+n^2}} \right\}$を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。