「根号」について
タグ「根号」の検索結果
(123ページ目:全1904問中1221問~1230問を表示) 国立 和歌山大学 2012年 第2問
平面上のベクトル$\overrightarrow{a},\ \overrightarrow{b}$が$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{5}$と$|2\overrightarrow{a}-\overrightarrow{b}|=2$を満たしている.このとき,次の問いに答えよ.
(1)$|\overrightarrow{a}|=k$とするとき,$|\overrightarrow{b}|$と$\overrightarrow{a} \cdot \overrightarrow{b}$をそれぞれ$k$を用いて表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が$\displaystyle \frac{\pi}{4}$であるとき,$|\overrightarrow{a}|$と$|\overrightarrow{b}|$の値をそれぞれ求めよ.
(1)$|\overrightarrow{a}|=k$とするとき,$|\overrightarrow{b}|$と$\overrightarrow{a} \cdot \overrightarrow{b}$をそれぞれ$k$を用いて表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が$\displaystyle \frac{\pi}{4}$であるとき,$|\overrightarrow{a}|$と$|\overrightarrow{b}|$の値をそれぞれ求めよ.
国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.
(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
国立 三重大学 2012年 第2問
座標平面上で$y=x+1$で表される直線を$\ell$とする.また,4点A$(-1,\ 1)$,B$(0,\ -2)$,C$(3,\ 1)$,D$(1,\ 3)$をとる.以下の問いに答えよ.
(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
(1)領域$R_1=\{ (x,\ y) \;|\; y>x+1 \}$と$R_2=\{ (x,\ y) \;|\; y \leqq x+1 \}$を考える.4点A,B,C,Dはそれぞれ,領域$R_1,\ R_2$のどちらにあるか答えよ.
(2)$k$を定数とし,直線$y=x+k$上に点E$(x,\ x+k)$をとる.Eと直線$\ell$の距離が$\sqrt{2}$となる$k$の値をすべて求めよ.
(3)四角形ABCDの周または内部で,直線$\ell$との距離が$\sqrt{2}$以下となる点の範囲を図示せよ.
(4)点P$(x,\ y)$が(3)で求めた範囲を動くとき,$2x+y$がとる値の最小値と最大値を求めよ.
国立 徳島大学 2012年 第2問
$n$を自然数とする.$\sqrt{3} \sin n \theta+\cos n \theta=0$を満たす$\theta>0$を小さいものから順に$n$個取り,$\theta_1,\ \theta_2,\ \cdots,\ \theta_n$とする.
(1)$k=1,\ 2,\ \cdots,\ n$に対し,$\theta_k$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}n \cos \frac{\theta_n}{2}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \left( \cos \frac{\theta_1}{2}+\cos \frac{\theta_2}{2}+\cdots +\cos \frac{\theta_n}{2} \right)$を求めよ.
(1)$k=1,\ 2,\ \cdots,\ n$に対し,$\theta_k$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}n \cos \frac{\theta_n}{2}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \left( \cos \frac{\theta_1}{2}+\cos \frac{\theta_2}{2}+\cdots +\cos \frac{\theta_n}{2} \right)$を求めよ.
国立 徳島大学 2012年 第3問
$f(x)=\sqrt{x}e^{-x} (0 \leqq x \leqq 1)$とする.
(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
国立 徳島大学 2012年 第4問
座標平面上に2点P$(x,\ 2)$,Q$(1-\sqrt{3},\ y)$がある.
(1)原点を中心とする$60^\circ$の回転移動によって点Pが点Qに移るとき,$x$と$y$の値を求めよ.
(2)$x$と$y$は(1)で求めた値とする.点Pを点Qに,点Qを点Pに移す1次変換を表す行列$A$を求めよ.
(3)自然数$n$と(2)で求めた行列$A$に対し
\[ A+2A^2+3A^3+4A^4+\cdots +(2n-1)A^{2n-1}+2nA^{2n} \]
を求めよ.
(1)原点を中心とする$60^\circ$の回転移動によって点Pが点Qに移るとき,$x$と$y$の値を求めよ.
(2)$x$と$y$は(1)で求めた値とする.点Pを点Qに,点Qを点Pに移す1次変換を表す行列$A$を求めよ.
(3)自然数$n$と(2)で求めた行列$A$に対し
\[ A+2A^2+3A^3+4A^4+\cdots +(2n-1)A^{2n-1}+2nA^{2n} \]
を求めよ.
国立 徳島大学 2012年 第2問
$f(x)=\sqrt{x}e^{-x} (0 \leqq x \leqq 1)$とする.
(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
(1)関数$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸および直線$x=1$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
国立 お茶の水女子大学 2012年 第2問
$a,\ b$を実数とし,$a<b$とする.関数$f(x)$は閉区間$[a,\ b]$で連続,開区間$(a,\ b)$で少なくとも2回まで微分可能で,$f^{\prime\prime}(x) \geqq 0$とする.以下の問いに答えよ.
(1)$a<c<b$とする.$y=g(x)$を点$(c,\ f(c))$における$f(x)$の接線とする.$a \leqq x \leqq b$のとき$g(x) \leqq f(x)$を示せ.
(2)$y=h(x)$を,$(a,\ f(a))$,$(b,\ f(b))$の2点を通る直線とする.$a \leqq x \leqq b$のとき$f(x) \leqq h(x)$を示せ.
(3)$a<c<b$とする.
\[ \frac{1}{2}(b-a) \left( f^\prime(c)(a+b-2c)+2f(c) \right) \leqq \int_a^b f(x) \, dx \leqq \frac{1}{2}(f(a)+f(b))(b-a) \]
を示せ.
(4)\[ \frac{\pi}{2}e^{-\frac{1}{\sqrt{2}}} \leqq \int_0^{\frac{\pi}{2}} e^{-\cos x} \, dx \leqq \frac{\pi}{4} \left( 1+\frac{1}{e} \right) \]
を示せ.
(1)$a<c<b$とする.$y=g(x)$を点$(c,\ f(c))$における$f(x)$の接線とする.$a \leqq x \leqq b$のとき$g(x) \leqq f(x)$を示せ.
(2)$y=h(x)$を,$(a,\ f(a))$,$(b,\ f(b))$の2点を通る直線とする.$a \leqq x \leqq b$のとき$f(x) \leqq h(x)$を示せ.
(3)$a<c<b$とする.
\[ \frac{1}{2}(b-a) \left( f^\prime(c)(a+b-2c)+2f(c) \right) \leqq \int_a^b f(x) \, dx \leqq \frac{1}{2}(f(a)+f(b))(b-a) \]
を示せ.
(4)\[ \frac{\pi}{2}e^{-\frac{1}{\sqrt{2}}} \leqq \int_0^{\frac{\pi}{2}} e^{-\cos x} \, dx \leqq \frac{\pi}{4} \left( 1+\frac{1}{e} \right) \]
を示せ.
国立 宇都宮大学 2012年 第3問
1辺の長さが1の正三角形ABCと,線分BCを$1:2$に内分する点Dが与えられている.実数$x \ (0 \leqq x \leqq 1)$に対し,線分AB上の点Pと線分AC上の点Qを$\text{AP}=\text{CQ}=x$となるように定めるとき,次の問いに答えよ.
(1)線分ADの長さを求めよ.
(2)三角形DPQの面積$S$を$x$の式で表せ.
(3)(2)の$S$について,$S$の最大値と最小値を求めよ.
(4)(2)の$S$の値が$\displaystyle \frac{\sqrt{3}}{8}$となるとき,$x$の値を求めよ.
(1)線分ADの長さを求めよ.
(2)三角形DPQの面積$S$を$x$の式で表せ.
(3)(2)の$S$について,$S$の最大値と最小値を求めよ.
(4)(2)の$S$の値が$\displaystyle \frac{\sqrt{3}}{8}$となるとき,$x$の値を求めよ.
国立 小樽商科大学 2012年 第2問
連立不等式$x^2+y^2 \leqq 1,\ \sqrt{2}x^2 \leqq y$を満たす部分の面積を求めよ.