タグ「根号」の検索結果

114ページ目:全1904問中1131問~1140問を表示)
大阪府立大学 公立 大阪府立大学 2013年 第1問
平面上に三角形$\mathrm{OAB}$があり,$\mathrm{OA}=3$,$\mathrm{OB}=\sqrt{3}$,$\angle \mathrm{AOB}=30^\circ$であるとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{N}$とする.ベクトル$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$との交点を$\mathrm{H}$とする.ベクトル$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
大阪府立大学 公立 大阪府立大学 2013年 第3問
$2$つの曲線$C_1:y=\log x$および$C_2:y=\sqrt{ax}$を考える.ただし,$a$は正の定数である.このとき,以下の問いに答えよ.

(1)曲線$C_1$上の点$(t,\ \log t)$における接線$\ell_1$の方程式,および曲線$C_2$上の点$(s,\ \sqrt{as})$における接線$\ell_2$の方程式を求めよ.ただし,$t>0,\ s>0$である.
(2)曲線$C_1$と曲線$C_2$の両方に接する直線が存在しないための$a$の値の範囲を求めよ.
九州歯科大学 公立 九州歯科大学 2013年 第1問
次の問いに答えよ.

(1)頂点間の距離が$24$であり,焦点が$(20,\ 0)$と$(-20,\ 0)$である双曲線の方程式を求めよ.
(2)初項を$a_1=4$とする数列$\{a_n\}$と初項を$b_1=1$とする数列$\{b_n\}$に対して,$c_n=\sqrt{a_nb_n}$,$\displaystyle d_n=\sqrt{\displaystyle\frac{a_n}{b_n}}$とおく.ただし,$a_n>0$,$b_n>0$とする.数列$\{c_n\}$が公差$2$の等差数列となり,数列$\{d_n\}$が公比$3$の等比数列となるとき,$a_5$と$b_5$の値を求めよ.
(3)関数$f(x)=Ax^5+Bx^4+Cx^3+Dx^2+Ex+F$が
\[ f(-x)=-f(x),\quad \lim_{x \to \infty}\frac{f(x)}{x^3}=6,\quad \int_0^1 f(x) \, dx=\frac{1}{2} \]
をみたすとき,定数$A,\ B,\ C,\ D,\ E,\ F$の値を求めよ.
首都大学東京 公立 首都大学東京 2013年 第3問
原点を$\mathrm{O}$とする座標平面で,関数$y=\sqrt{x^2-1} (x \geqq 1)$のグラフを$C$とする.また,$t>1$を満たす実数$t$に対し,直線$x+y=t$と$C$との交点を$\mathrm{P}$,直線$x+y=t$と$x$軸との交点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)線分$\mathrm{PQ}$の長さ$f(t)$を求めなさい.
(2)次の極限値を求めなさい.
\[ \lim_{n \to \infty}\sum_{k=1}^n f \left( 1+\frac{k(t-1)}{n} \right) \frac{t-1}{\sqrt{2}n} \]
(3)線分$\mathrm{OP}$,$x$軸および$C$で囲まれる図形の面積を$S$とする.$S$を用いて点$\mathrm{P}$の座標を表しなさい.
大阪府立大学 公立 大阪府立大学 2013年 第3問
座標平面上の点$\mathrm{P}(0,\ -1)$を中心とする半径$2$の円を$C$とする.$C$上に点$\mathrm{Q}(0,\ 1)$をとる.点$\mathrm{R}$を$C$上の点で$\angle \mathrm{QPR}=120^\circ$をみたし,$\mathrm{R}$の$x$座標は負であるようにとる.$\mathrm{Q}$と$\mathrm{R}$を両端として,中心角が$120^\circ$である$C$の弧を$A$とする.さらに,$a$を実数の定数として,直線$\displaystyle y=\frac{1}{\sqrt{3}}x+a$を$\ell$とするとき,以下の問いに答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$A$と$\ell$の共有点の個数を求めよ.
(3)$A$と$\ell$が相異なる$2$つの共有点をもつとき,$A$と$\ell$で囲まれた部分の面積を$S(a)$とする.$S(a)$が最大になるときの$a$の値と,そのときの$S(a)$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2013年 第6問
$2$次関数$\displaystyle y=\sqrt{2}x^2-\frac{\sqrt{2}}{4}$のグラフを$C$とする.以下の問いに答えよ.

(1)相異なる実数$s,\ t$に対し,$C$上の点$\displaystyle \left( s,\ \sqrt{2}s^2-\frac{\sqrt{2}}{4} \right)$,$\displaystyle \left( t,\ \sqrt{2}t^2-\frac{\sqrt{2}}{4} \right)$における$C$の法線をそれぞれ$\ell_s,\ \ell_t$で表す.$\ell_s$と$\ell_t$の交点の座標を求めよ.ただし,曲線$C$上の点$\mathrm{P}$における法線とは,$\mathrm{P}$を通り,$\mathrm{P}$における$C$の接線と垂直に交わる直線のことである.
(2)$t$を固定して$s$を$t$に近づけるとき,(1)で求めた交点の$x$座標と$y$座標が近づく値をそれぞれ$f(t)$,$g(t)$で表す.このとき,$f(t)$,$g(t)$を求めよ.
(3)(2)で求めた$f(t)$,$g(t)$を,実数全体で定義された$t$の関数とみなして,
\[ x=f(t),\quad y=g(t) \]
によって媒介変数表示される曲線を$D$とする.このとき,$C$と$D$によって囲まれた部分の面積を求めよ.
会津大学 公立 会津大学 2013年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_{-2}^1 x \sqrt{x+3} \, dx=[イ]$

(ii) $\displaystyle \int_0^\pi e^x \sin x \, dx=[ロ]$

(2)$2$つの放物線$y=4x^2$と$y=(x-1)^2$で囲まれた部分の面積は$[ハ]$である.
(3)$\sqrt{-2} \, \sqrt{-3}=[ニ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ホ]$である.
(5)$0 \leqq x \leqq \pi$において$\displaystyle \sin 2x-\frac{1}{2}=\sin x-\cos x$のとき,$x=[ヘ]$である.
(6)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を重複なく用いて作られる$5$桁の整数を小さい順に並べる.初めて$20000$以上になる整数は$[ト]$で,それは$[チ]$番目である.
高崎経済大学 公立 高崎経済大学 2013年 第2問
$0^\circ<\theta<180^\circ$で,$\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{2}}{2}$であるとき,以下の各問いに答えよ.

(1)$\sin \theta-\cos \theta$の値を求めよ.
(2)$\tan \theta$の値を求めよ.
京都府立大学 公立 京都府立大学 2013年 第1問
以下の問いに答えよ.

(1)$\sqrt[3]{7}$が無理数であることを証明せよ.
(2)$\sqrt{7}$が無理数であることを用いて,$\sqrt{11}-\sqrt{7}$が無理数であることを証明せよ.
(3)$k,\ l,\ m,\ n$は$k=\sqrt{l^2+m^2+n^2}$を満たす自然数とする.このとき,$l,\ m,\ n$のうち少なくとも$2$つが偶数であることを証明せよ.
京都府立大学 公立 京都府立大学 2013年 第3問
$0 \leqq a<1$とする.$xy$平面上の曲線$C$を$y=1+x \sqrt{1-x^2}$で,直線$\ell$を$y=1+ax$で定める.$C$と$\ell$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を$a$の関数と考えて$V(a)$とする.以下の問いに答えよ.

(1)$-1 \leqq x \leqq 1$とするとき,不等式$2x \sqrt{1-x^2} \geqq x$を解け.
(2)$V(a)$を$a$を用いて多項式で表せ.
(3)$\displaystyle M_n=\frac{1}{2n} \sum_{k=1}^n V \left( \frac{k}{2n} \right)$とするとき,$\displaystyle \lim_{n \to \infty}M_n$を求めよ.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。