タグ「根号」の検索結果

110ページ目:全1904問中1091問~1100問を表示)
近畿大学 私立 近畿大学 2013年 第2問
空間内の同一平面上にない$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が,$|\overrightarrow{\mathrm{OA}}|=2$,$|\overrightarrow{\mathrm{OB}}|=3$,$|\overrightarrow{\mathrm{OC}}|=4$,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{BC}}|=6$,$|\overrightarrow{\mathrm{CA}}|=5$を満たしているとする.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{[アイ]}{[ウ]}$,内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$の値は$\displaystyle \frac{[エオカ]}{[キ]}$,内積$\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}$の値は$\displaystyle \frac{[クケ]}{[コ]}$である.
(2)線分$\mathrm{OA}$の中点を$\mathrm{L}$,線分$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{M}$,線分$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{N}$とする.$\triangle \mathrm{LMN}$の重心を$\mathrm{P}$とし,直線$\mathrm{OP}$と平面$\mathrm{ABC}$との交点を$\mathrm{Q}$とする.このとき,
\[ \overrightarrow{\mathrm{OP}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{OC}} \]
であり,したがって
\[ |\overrightarrow{\mathrm{OP}}|=\frac{\sqrt{[チツ]}}{[テ]} \]
となる.また,
\[ \frac{|\overrightarrow{\mathrm{OP}}|}{|\overrightarrow{\mathrm{PQ}}|}=\frac{[トナ]}{[ニヌ]} \]
である.
近畿大学 私立 近畿大学 2013年 第3問
$\mathrm{O}$を原点とする座標平面において,曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と直線$\ell:y=-2x+a$を考える.ただし,$a$は定数とする.

(1)$C$と$\ell$が$2$個の共有点をもつとき,$a$のとりうる値の範囲は,$a>[ア] \sqrt{[イ]}$である.
(2)$(1)$の条件のもとで,$C$と$\ell$の共有点を$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とする.

(i) $\mathrm{P}$の$x$座標を$\alpha$,$\mathrm{Q}$の$x$座標を$\beta$とすると
\[ \alpha+\beta=\frac{a}{[ウ]},\quad \beta-\alpha=\frac{\sqrt{a^2-[エ]}}{[オ]},\quad \alpha\beta=\frac{[カ]}{[キ]} \]
である.
(ii) $\triangle \mathrm{OPQ}$の面積は
\[ \frac{a \sqrt{a^2-[ク]}}{[ケ]} \]
である.
(iii) 線分$\mathrm{PQ}$の長さが$5$であるとき,$a=[コ] \sqrt{[サ]}$であり,このとき$C$と$\ell$で囲まれた部分の面積は
\[ \sqrt{[シス]}+\log ([セ]-\sqrt{[ソタ]}) \]
である.
近畿大学 私立 近畿大学 2013年 第1問
$xy$平面に正三角形$\mathrm{ABC}$があり,$3$頂点の座標はそれぞれ$\mathrm{A}(0,\ \sqrt{3})$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(1,\ 0)$となっている.線分$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{CA}$の中点を$\mathrm{E}$とする.また$\mathrm{P}$は辺$\mathrm{AB}$上を動く点とし,$\mathrm{Q}$は辺$\mathrm{AC}$上を動く点とする.

(1)直線$\mathrm{AB}$に関して$\mathrm{D}$と対称な点$\mathrm{T}$の座標は$([ア],\ [イ])$である.
(2)線分$\mathrm{TE}$を$s:1-s$の比に内分する点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{BR}}=m \overrightarrow{\mathrm{BA}}+n \overrightarrow{\mathrm{BC}}$と表すと$m=[ウ]$,$n=[エ]$となる.ただし$m,\ n$は$s$の$1$次式である.また$s=[オ]$のとき$\mathrm{R}$は線分$\mathrm{AB}$上にある.
(3)$\mathrm{DP}+\mathrm{PE}$の最小値は$[カ]$である.またそのとき$\mathrm{BP}=[キ]$となる.
(4)$\mathrm{DP}+\mathrm{PQ}+\mathrm{QD}$の最小値は$[ク]$である.またそのとき$\tan \angle \mathrm{BPQ}=[ケ]$となる.
九州産業大学 私立 九州産業大学 2013年 第1問
次の問いに答えよ.

(1)$3+\sqrt{2}$の小数部分を$a$とするとき,次の計算をせよ.

(i) $\displaystyle a+\frac{1}{a}=[ア] \sqrt{[イ]}$である.
(ii) $\displaystyle a^3-\frac{1}{a^3}=[ウエオ]$である.

(2)方程式$8 \cdot 4^x-129 \cdot 2^x+16=0$の解は$x=[カキ]$と$x=[ク]$である.
(3)$3$点$(0,\ 0)$,$(\cos {30}^\circ,\ \sin {30}^\circ)$,$(\sqrt{2} \cos \alpha,\ \sqrt{2} \sin \alpha)$を頂点とする三角形の面積が$\displaystyle \frac{1}{2}$であるとき$\alpha$の値は$[ケコ]^\circ$である.ただし${30}^\circ<\alpha \leqq {90}^\circ$とする.
(4)点$\mathrm{P}$が$xy$平面の原点$\mathrm{O}$にある.コインを投げ,表が出たならば点$\mathrm{P}$を$x$軸方向に$1$だけ動かし,裏が出たならば点$\mathrm{P}$を$y$軸方向に$1$だけ動かす.コインを$5$回投げたときの点$\mathrm{P}$の座標を$(x,\ y)$とする.

(i) $x$の最大値は$[サ]$,最小値は$[シ]$である.
(ii) $(x,\ y)=(2,\ 3)$となる場合の数は$[スセ]$通りである.

(iii) $(x,\ y)=(2,\ 3)$となる確率は$\displaystyle \frac{[ソ]}{[タチ]}$である.
九州産業大学 私立 九州産業大学 2013年 第2問
放物線$y=x^2-4x+6$と放物線$y=2x^2-7x+8$がある.原点を$\mathrm{O}$とし,この$2$つの放物線の交点を$x$座標の小さい順に$\mathrm{A}$,$\mathrm{B}$とする.点$\mathrm{C}$は$\triangle \mathrm{OAB}$の外接円上にあり$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$とは異なる点とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$である.
(2)$\triangle \mathrm{OAB}$の面積は$[オ]$である.
(3)$\triangle \mathrm{OAB}$の外接円の半径は$\displaystyle \frac{\sqrt{[カキ]}}{[ク]}$である.
(4)$\triangle \mathrm{OAB}$と$\triangle \mathrm{OBC}$の面積が等しいとき,点$\mathrm{C}$の座標は$([ケコ],\ [サ])$である.
産業医科大学 私立 産業医科大学 2013年 第3問
$b$を$b>1$となる定数とする.原点を$\mathrm{O}$とする座標平面上の点$\mathrm{P}(x_0,\ y_0)$の座標は${x_0}^2+{y_0}^2=b$,${x_0}^2 \geqq 1$を満たすとする.このとき,点$\displaystyle \mathrm{Q} \left( \frac{x_0}{\sqrt{3}},\ x_0{y_0}^2 \right)$に対し,次の問いに答えなさい.

(1)${x_0}^2=t$とおくとき,線分$\mathrm{OQ}$の長さの$2$乗$\mathrm{OQ}^2$を$t$の関数として表しなさい.
(2)線分$\mathrm{OQ}$の長さを最大にする${x_0}^2$を求めなさい.
広島工業大学 私立 広島工業大学 2013年 第4問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=1+\sqrt{6}$,$\mathrm{CA}=2$,$\displaystyle \angle \mathrm{C}=\frac{\pi}{3}$とする.

(1)$\triangle \mathrm{ABC}$の面積$S$を求めよ.
(2)辺$\mathrm{AB}$の長さを求めよ.
(3)$\triangle \mathrm{ABC}$の内接円の半径$r$を求めよ.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,$|\overrightarrow{a}|=\sqrt{3}$,$\displaystyle |\overrightarrow{b}|=\frac{2}{\sqrt{3}}$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$とする.さらに,辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とし,点$\mathrm{M}$を通り辺$\mathrm{OA}$に垂直な直線と点$\mathrm{N}$を通り辺$\mathrm{OB}$に垂直な直線との交点を$\mathrm{P}$とする.このとき,次の空所を埋めよ.

(1)$\overrightarrow{a} \cdot \overrightarrow{b}=[ア]$である.
(2)$x,\ y$を実数とし,$\overrightarrow{\mathrm{OP}}=x \overrightarrow{a}+y \overrightarrow{b}$とおくと,$\overrightarrow{\mathrm{MP}}=(x-[イ]) \overrightarrow{a}+y \overrightarrow{b}$と表されるので,$\overrightarrow{\mathrm{MP}} \perp \overrightarrow{a}$より$x,\ y$の関係式は$3x+y=[ウ]$である.
また,$\overrightarrow{\mathrm{NP}} \perp \overrightarrow{b}$より,$x,\ y$の関係式は$[エ]=2$である.したがって,$x=[オ]$,$y=[カ]$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
スポンサーリンク

「根号」とは・・・

 まだこのタグの説明は執筆されていません。