タグ「条件」の検索結果

62ページ目:全636問中611問~620問を表示)
室蘭工業大学 国立 室蘭工業大学 2010年 第5問
$a,\ b,\ c,\ d$を実数とする.$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とし,2次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は$A^2=-E$を満たすとする.

(1)$a=0$のとき,$d,\ bc$の値を求めよ.
(2)(1)の条件のもとで,$E+A$が逆行列をもつことを示せ.さらに,実数$p,\ q$を用いて$(E+A)^{-1}$を$pE+qA$の形で表すとき,$p,\ q$の値を求めよ.
(3)$a$を任意の実数とするとき,$a+d,\ ad-bc$の値を求めよ.
京都教育大学 国立 京都教育大学 2010年 第5問
太郎君は関数$f(x)$を$x$について微分して導関数$f^\prime(x)=6x+6$を得た.次の(1),(2)に答えよ.

(1)次の(a),(b)のそれぞれの場合において,元の関数$f(x)$を求めよ.

\mon[(a)] $y=f(x)$が表す曲線と直線$y=2$が接する場合.
\mon[(b)] $y=f(x)$と$x$軸とで囲まれる図形の面積が$\displaystyle \frac{4 \sqrt{3}}{9}$になる場合.

(2)太郎君の話を聞いた花子さんは,次の$①$から$⑤$の付加条件を1つだけ加えて元の関数$f(x)$を求めることにした.
\begin{screen}
{\bf 付加条件}

\mon[$①$] $f(0)=3$
\mon[$②$] $F(x)$を$f(x)$の不定積分の1つとしたとき,$F(2)-F(1)=7$
\mon[$③$] $F(x)$を$f(x)$の不定積分の1つとしたとき,$F(0)=0$
\mon[$④$] $f^\prime(0)=f(1)$
\mon[$⑤$] $f^\prime(-1)=0$

\end{screen}
元の関数$f(x)$を求めることが{\bf できない}付加条件を$①$から$⑤$の中から選んで,その番号を全てかけ.
千葉大学 国立 千葉大学 2010年 第11問
$f(x)$は実数全体で定義された関数とする.実数$a$に関する条件$(\mathrm{P})$を考える.

$(\mathrm{P})$ 正の実数$r$を十分小さく選べば,$|x-a|<r$をみたすすべての実数$x$に対して$f(x) \leqq f(a)$が成り立つ.

このとき,以下の問いに答えよ.

(1)実数$a$が条件$(\mathrm{P})$をみたし,かつ,$f(x)$が$x=a$で微分可能ならば,$f^\prime(a)=0$であることを証明せよ.
(2)関数$f(x)$が
\[ f(x)=\left\{
\begin{array}{ll}
|x|-x & (x<1 \text{のとき}) \\
|x^2-6x+8| & (x \geqq 1 \text{のとき})
\end{array}
\right. \]
で定義されているとき,条件$(\mathrm{P})$をみたすような実数$a$全体の集合を決定せよ.
(3)一般に,実数全体で定義された関数$f(x)$に対し,次の命題は正しいか.正しければ証明し,正しくなければ反例を挙げよ.

(命題) すべての実数$a$が条件$(\mathrm{P})$をみたすならば,$f(x)$は定数関数である.
福岡教育大学 国立 福岡教育大学 2010年 第7問
数列$\{a_n\}$は次の条件を満たす.
\[ a_1=-1,\quad a_2=1,\quad a_{n+2}=5a_{n+1}-6a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき次の問いに答えよ.

(1)$a_3,\ a_4,\ a_5$を求めよ.
(2)$a_{n+2}-\alpha a_{n+1}=\beta (a_{n+1}-\alpha a_n)$を満たす実数$\alpha,\ \beta$の組を全て求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
東京海洋大学 国立 東京海洋大学 2010年 第4問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{Q}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{R}$,辺$\mathrm{AB}$の中点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$となるための条件を$|\overrightarrow{a}|$,$|\overrightarrow{b}|$と内積$\overrightarrow{a} \cdot \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$かつ$|\overrightarrow{a}|=1$のとき,$|\overrightarrow{b}|$のとりうる値の範囲を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)整数$a,\ b$が$2a+3b=42$を満たすとき,$ab$の最大値は$[ア]$である.
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=1$,$\mathrm{CA}=\sqrt{2}$とし,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とする.正の整数$m,\ n$が$m\alpha + n\beta = \pi$を満たすとき,$m=[イ]$,$n=[ウ]$である.
(3)数列$\{a_n\}$は次の$3$つの条件を満たしている.

(i) $\{a_n\}$は等差数列で,その公差は$0$ではない.
(ii) $a_1=1$
(iii) 数列$a_3,\ a_6,\ a_{10}$は等比数列になっている.

このとき数列$\{a_n\}$の第$2010$項までの和$\displaystyle \sum_{n=1}^{2010}a_n$の値は$[エ]$である.
(4)四面体$\mathrm{ABCD}$は$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=1$を満たす.このような四面体の体積のとり得る最大値は$[オ]$である.
早稲田大学 私立 早稲田大学 2010年 第4問
$k$は実数の定数とする.実数$x,\ y$に対して,次の条件$\mathrm{P}$,$\mathrm{Q}$を考える.\\
\quad $\mathrm{P}:x \geqq 0$\quad かつ \quad $y \geqq 0$\\
\quad $\mathrm{Q}:-kx+y \geqq 0$\quad かつ \quad $14x-(k-5)y \geqq 0$\\
このとき,$\mathrm{P}$が$\mathrm{Q}$の十分条件となるための$k$の範囲は,$k \leqq [コ]$である.また,$\mathrm{P}$が$\mathrm{Q}$の必要条件となるための$k$の範囲は$[サ] \leqq k \leqq [シ]$である.
関西大学 私立 関西大学 2010年 第1問
$b,\ c$を実数とし,$2$次方程式$x^2+bx+c=0$の解を$\alpha,\ \beta$とする.次の$[ ]$をうめよ.

(1)$\alpha=\cos \theta$,$\beta=\sin \theta$となる$0 \leqq \theta<2\pi$が存在すれば,$b$と$c$は等式$[$1$]$を満たす.
(2)$\alpha=3 \cos \theta$,$\beta=\sin \theta$となる$0 \leqq \theta<2\pi$が存在するという条件のもとで,$b$のとりうる最大の値は$[$2$]$であり,このとき$\alpha=[$3$]$,$\beta=[$4$]$である.また,同じ条件のもとで$c$のとりうる最大の値は$[$5$]$であり,このとき$\theta=[$6$]$,$[$7$]$である.ただし,$[$6$]<[$7$]$とする.
早稲田大学 私立 早稲田大学 2010年 第1問
次の問いに答えよ.

(1)平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$,$\mathrm{C}(1,\ 1)$に対し,線分$\mathrm{BC}$の垂直二等分線は$[ア]x+y+[イ]=0$となる.また,平面上で$\mathrm{PC} \leqq \mathrm{PO}$,$\mathrm{PC} \leqq \mathrm{PA}$,$\mathrm{PC} \leqq \mathrm{PB}$を満たす点$\mathrm{P}$の存在する範囲は$3$点$(0,\ 1)$,$(2,\ [ウ])$,$([エ],\ [オ])$を頂点とする三角形の内部および周であり,この三角形の面積は$[カ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,点$\mathrm{O}$を定点として,$2$点$\mathrm{A}$,$\mathrm{B}$は次の条件を満たしながら動く.

$\angle \mathrm{AOB}=60^\circ$
$|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|^2+|\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}|^2=8$

さらに,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$となるようにとるとき,$|\overrightarrow{\mathrm{OC}}|$の最大値は$\sqrt{[キ]}$である.
早稲田大学 私立 早稲田大学 2010年 第2問
次の問いに答えよ.

(1)自然数$n$が$n=p^2q$($p,\ q$は素数,$p \neq q$)の形で表されるとき,$n$の正の約数は$6$個あり,それらの和は
\[ ([ク]+p+p^2)([ケ]+q) \]
と表すことができる.このような$n$で正の約数の和が$2n$となるような数を求める.正の約数の和が$2n$であるから,
\[ 2p^2q=([ク]+p+p^2)([ケ]+q) \]
が成り立つ.$[ク]+p+p^2$は奇数であり,$p$の倍数ではないから,$[ケ]+q$は$2p^2$の倍数となり,
\[ [ケ]+q=2p^2k \quad (k \text{は自然数}) \]
とおける.したがって,
\[ q=([ク]+p+p^2)k \]
となるが,$q$は素数であるから,$k=[コ]$である.よって
\[ p^2-p-[サ]=0 \]
これを解いて,$p=[シ]$である.ゆえに$n=[ス]$である.
(2)条件
\[ a_1=3,\quad a_{n+1}=\frac{3a_n+2}{a_n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定められる数列$\{a_n\}$に対して,$\displaystyle b_n=\frac{a_n-2}{a_n+1}$とおくと,数列$\{b_n\}$は等比数列となり,これより,数列$\{a_n\}$の一般項は
\[ a_n=\frac{[セ] \cdot [ソ]^n+[タ]}{[チ]^n-[ツ]} \]
となる.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。