タグ「条件」の検索結果

59ページ目:全636問中581問~590問を表示)
弘前大学 国立 弘前大学 2010年 第4問
数列$\{a_n\},\ \{b_n\}$が次の条件を満たすとする.
\begin{eqnarray}
& & a_1=1, a_2=2, a_{n+2}=2a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber \\
& & b_1=2, b_2=6, b_{n+2}=2b_{n+1}+b_n \quad (n=1,\ 2,\ 3,\ \cdots) \nonumber
\end{eqnarray}
さらに行列$A$を$A=\biggl( \begin{array}{cc}
6 & 2 \\
2 & 2
\end{array} \biggr)$とする.このとき次が成り立つことを証明せよ.

(1)$n$が2以上の偶数のとき,$\displaystyle A^n=8^{\frac{n}{2}} \biggl( \begin{array}{cc}
a_{n+1} & a_n \\
a_n & a_{n-1}
\end{array} \biggr)$
(2)$n$が3以上の奇数のとき,$\displaystyle A^n=8^{\frac{n-1}{2}} \biggl( \begin{array}{cc}
b_{n+1} & b_n \\
b_n & b_{n-1}
\end{array} \biggr)$
東京工業大学 国立 東京工業大学 2010年 第4問
$a$を正の定数とする.原点をOとする座標平面上に定点A = A$(a,\ 0)$と,Aと異なる動点P = P$(x,\ y)$をとる.次の条件
\begin{eqnarray}
& & \text{AからPに向けた半直線上の点Qに対し} \nonumber \\
& & \frac{\text{AQ}}{\text{AP}} \leqq 2 \quad \text{ならば} \quad \frac{\text{QP}}{\text{OQ}} \leqq \frac{\text{AP}}{\text{OA}} \nonumber
\end{eqnarray}
を満たすPからなる領域を$D$とする.$D$を図示せよ.
信州大学 国立 信州大学 2010年 第1問
平面上に4点O,A,B,Cがあり,ベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$は次の条件を満たして
いる.
\begin{eqnarray}
& & |\overrightarrow{\mathrm{OA}}| = 1,\ |\overrightarrow{\mathrm{OB}}| =\sqrt{2},\ |\overrightarrow{\mathrm{OC}}| = \sqrt{3} \nonumber \\
& & \overrightarrow{\mathrm{OA}}+ \overrightarrow{\mathrm{OB}}+ \overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{0}} \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}}$であることを示せ.
(2)AからBCに下ろした垂線とBCの交点をHとする.AHの長さを求めよ.
東京大学 国立 東京大学 2010年 第1問
Oを原点とする座標平面上に点A$(-3,\ 0)$をとり,
$0^\circ<\theta<120^\circ$の範囲にある$\theta$に対して,次の条件(i),(ii)をみたす2点B,Cを考える.

\mon[(i)] Bは$y>0$の部分にあり,$\text{OB}=2$かつ$\angle \text{AOB}=180^\circ-\theta$である.
\mon[(ii)] Cは$y<0$の部分にあり,$\text{OC}=1$かつ$\angle \text{BOC}=120^\circ$である.ただし$\triangle \text{ABC}$はOを含むものとする.

\quad 次の問(1),(2)に答えよ.

(1)$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積が等しいとき,$\theta$の値を求めよ.
(2)$\theta$を$0^\circ<\theta<120^\circ$の範囲で動かすとき,$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積の和の最大値と,そのときの$\sin \theta$の値を求めよ.
名古屋大学 国立 名古屋大学 2010年 第1問
$xy$平面上の長方形ABCDが次の条件(a),(b),(c)を満たしているとする.

\mon[(a)] 対角線ACとBDの交点は原点Oに一致する.
\mon[(b)] 直線ABの傾きは2である.
\mon[(c)] Aの$y$座標は,B,C,Dの$y$座標より大きい.

このとき,$a>0,\ b>0$として,辺ABの長さを$2\sqrt{5}a$,BCの長さを$2\sqrt{5}b$とおく.

(1)A,B,C,Dの座標を$a,\ b$で表せ.
(2)長方形ABCDが領域$x^2+(y-5)^2 \leqq 100$に含まれるための$a,\ b$に対する条件を求め,$ab$平面上に図示せよ.
信州大学 国立 信州大学 2010年 第2問
平面上に4点O,A,B,Cがあり,ベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$は次の条件を満たしている.
\begin{eqnarray}
& & |\overrightarrow{\mathrm{OA}}| = 1,\ |\overrightarrow{\mathrm{OB}}| = \sqrt{2},\ |\overrightarrow{\mathrm{OC}}| = \sqrt{3} \nonumber \\
& & \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{0}} \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}}$であることを示せ.
(2)AからBCに下ろした垂線とBCの交点をHとする.AHの長さを求めよ.
筑波大学 国立 筑波大学 2010年 第4問
点Oを原点とする座標平面上に,2点A$(1,\ 0)$,B$(\cos \theta,\ \sin \theta) \ (90^\circ<\theta<180^\circ)$をとり,以下の条件をみたす2点C,Dを考える.
\[ \overrightarrow{\mathrm{OA}}\cdot \overrightarrow{\mathrm{OC}}=1, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OD}}=0, \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=0, \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OD}}=1 \]
また,$\triangle$OABの面積を$S_1$,$\triangle$OCDの面積を$S_2$とおく.

(1)ベクトル$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$の成分を求めよ.
(2)$S_2=2S_1$が成り立つとき,$\theta$と$S_1$の値を求めよ.
(3)$S=4S_1+3S_2$を最小にする$\theta$と,そのときの$S$の値を求めよ.
筑波大学 国立 筑波大学 2010年 第5問
$a$を実数とし,$A=\biggl( \begin{array}{cc}
a+1 & a \\
3 & a+2
\end{array} \biggr)$とする.2点P$(x,\ y)$,Q$(X,\ Y)$について
\[ \biggl( \begin{array}{c}
X \\
Y
\end{array} \biggr) = A \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr) \]
が成り立つとき,Pは$A$によりQに移るという.

(1)原点以外の点で,$A$によりそれ自身に移るものが存在するとき,$a$を求めよ.
(2)次の条件$(*)$をみたす$a,\ k$を求めよ.
\[ (*) \quad \text{直線} \ell:y=kx+1 \text{上のすべての点は,} \ A \text{により} \ell \text{上の点に移る.} \]
(3)$(*)$をみたす$a,\ k$に対し,直線$\ell$上の点で,$A$によりそれ自身に移るものを求めよ.
名古屋大学 国立 名古屋大学 2010年 第2問
関数$f(x)$を
\[ f(x)=\left\{
\begin{array}{l}
1 \quad (x \geqq 0) \\
0 \quad (x<0)
\end{array}
\right. \]
により定める.

(1)$a,\ b$は実数とする.$y = ax + b$のグラフと$y = f(x)$のグラフがちょうど2つの交点をもつための$a,\ b$に対する条件を求めよ.
(2)$p,\ q$は実数で$p>0$とする.$y = x^3 + 6px^2 + 9p^2x + q$のグラフと$y = f(x)$のグラフがちょうど4つの交点をもつための$p,\ q$に対する条件を求め,$pq$平面上に図示せよ.
富山大学 国立 富山大学 2010年 第1問
次の$2$つの条件を同時にみたす正の整数$a,\ b$を求めよ.

(条件1) $\sqrt{a+b}$の小数第$2$位を四捨五入すると$3.3$になる.
(条件2) $\displaystyle \sqrt{\frac{a}{b}}$の小数第$2$位を四捨五入すると$1.6$になる.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。