タグ「条件」の検索結果

55ページ目:全636問中541問~550問を表示)
上智大学 私立 上智大学 2011年 第1問
$a,\ b,\ c$は整数で,$a \geqq 1,\ b \geqq 0,\ c \geqq 0$とする.$x$の2次式$P(x)=ax^2+bx+c$を考える.

(1)$P(1)=2$を満たす$P(x)$は全部で[ア]個存在する.
(2)条件 \[ \lceil P(n)=5 \text{を満たす自然数}n\text{が存在する}\rfloor \]
を満たす$P(x)$は全部で[イ]個存在する.
このような$P(x)$のうち,$P(3)=17$を満たすものは
\[ P(x) = [ウ]x^2+[エ]x+[オ] \]
である.
(3)条件
\[ \lceil P(n)=3 \text{を満たす自然数}n\text{が存在し,} \]
\[ \qquad \qquad \text{かつ,任意の自然数}m\text{に対して}P(m)\text{が奇数である}\rfloor \]
を満たす$P(x)$のうち,$a$が最大のものは
\[ P(x) = [カ]x^2+[キ]x+[ク] \]
であり,$a$が最小のものは
\[ P(x) = [ケ]x^2+[コ]x+[サ] \]
である.
北海学園大学 私立 北海学園大学 2011年 第3問
$f(x)=2x^3+12x^2+18x+9$とおくとき,関数$y=f(x)$のグラフは点$\mathrm{A}$に関して点対称である.点$\mathrm{A}$を通る傾き$m$の直線を$\ell$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$の座標を求めよ.
(2)直線$\ell$が関数$y=f(x)$のグラフと$3$点で交わる条件を求めよ.
(3)関数$y=f(x)$のグラフと直線$\ell$で囲まれた$2$つの部分の面積の和が$1$となるような$m$の値を求めよ.
南山大学 私立 南山大学 2011年 第3問
座標空間に$3$点$\mathrm{A}(4,\ 0,\ -1)$,$\mathrm{B}(0,\ 2,\ 1)$,$\mathrm{C}(a,\ b,\ 0)$がある.

(1)$\mathrm{AC}=\mathrm{BC}$のとき,$a,\ b$が満たす条件を求めよ.
(2)$\angle \mathrm{ACB}$が$90^\circ$のとき,$a,\ b$が満たす条件を求めよ.また,その条件を満たしながら$a,\ b$の値が変わるとき,$xy$平面上での$\mathrm{C}$の軌跡を求めよ.
(3)$(1)$の条件と$(2)$の条件をともに満たす$\mathrm{C}$の座標を求めよ.
明治大学 私立 明治大学 2011年 第2問
次の各問の$[ ]$にあてはまる数を記入せよ.

座標空間内に点$\mathrm{P}(s+3,\ 2s-1,\ 2s+1)$と点$\mathrm{Q}(2s+3,\ 1-2s,\ s-1)$がある.ただし,$s$は実数全体を動く.次の問に答えよ.
(1)線分$\mathrm{PQ}$の長さは
\[ \sqrt{[ア] \left( [イ]s^2-[ウ]s+[エ] \right)} \]
であり,$\displaystyle s=\frac{[オ]}{[カ]}$のときに最小値$\sqrt{[キ]}$をとる.

(2)$\mathrm{O}$を原点とし,$\theta=\angle \mathrm{POQ}$とする.$\cos \theta$のとる値の範囲を求めよう.$k=\cos \theta$とおくと
\[ k=\frac{[クケ]s+[コ]}{[サ]s^2+[シ]s+[スセ]} \cdots\cdots (*) \]
である.

(i) $\displaystyle s=-\frac{[コ]}{[クケ]}$のとき$k=0$となる.
(ii) $k \neq 0$のときに$(*)$を満たす実数$s$が存在するための条件は
\[ -\frac{[ソ]}{[タ]} \leqq k \leqq \frac{[チ]}{[ツ]} \]
である.

$(ⅰ),\ (ⅱ)$より$\cos \theta$のとる値の範囲は
\[ -\frac{[ソ]}{[タ]} \leqq \cos \theta \leqq \frac{[チ]}{[ツ]} \]
である.また,$\displaystyle \cos \theta=\frac{[チ]}{[ツ]}$となるのは$\displaystyle s=\frac{[テ]}{[ト]}$のときである.
明治大学 私立 明治大学 2011年 第2問
次のア~へに当てはまる$0$~$9$の数字を解答欄に入れよ.

(1)$0 \leqq x,\ y$かつ$3x+2y=4$を満たす$(x,\ y)$に対して,$\displaystyle x^3+\frac{8}{3}y^3$は,$(x,\ y)=([ア],\ [イ])$のとき,最大値$\displaystyle \frac{[ウエ]}{[オ]}$となり,$\displaystyle (x,\ y)=\left( [カ],\ \frac{[キ]}{[ク]} \right)$のとき,最小値$\displaystyle \frac{[ケ]}{[コ]}$となる.

(2)$0 \leqq y \leqq 4x-2x^2$を満たす$(x,\ y)$にたいして,$z=4x^2+2xy-8x$の最大値と最小値を考える.条件から考える$x$の範囲は,$[サ] \leqq x \leqq [シ]$である.この範囲の$x$を$1$つ固定して,$z$の値を考えると,$z$は,$y$についての$1$次式だから,固定された$x$にたいして,$z$は$y=[ス]x-[セ]x^2$のとき,最も大きく$z=-[ソ]x^3+[タチ]x^2-[ツ]x$となる.従って,考える範囲の$(x,\ y)$にたいしては,$\displaystyle (x,\ y)=\left( [テ]+\frac{\sqrt{[ト]}}{[ナ]},\ \frac{[ニ]}{[ヌ]} \right)$のとき,$z$は最大値$\displaystyle \frac{[ネ] \sqrt{[ノ]}}{[ハ]}$となる.同様のやり方で最小値をもとめると,$(x,\ y)=([ヒ],\ [フ])$のとき,$z$は最小値$-[ヘ]$となる.
明治大学 私立 明治大学 2011年 第3問
自然数$n,\ k$について,$xy$平面上で$0 \leqq y \leqq x$と$y \leqq 2n+k-x$で定まる領域を$C_k$とする.ある整数$a,\ b$に対して,$(a,\ b)$,$(a+k,\ b)$,$(a,\ b+k)$,$(a+k,\ b+k)$を頂点にもつ正方形を$1$辺が$k$の格子点の正方形と呼ぶ事にする.$C_k$に入る格子点の正方形を考える($C_k$の境界も含める).このとき,次の問いに答えよ.

(1)$n=4$のとき,$C_k$内に$1$辺が$k$の格子点の正方形が存在するための,最大の$k$をもとめよ.
(2)$1$辺が$k$の格子点の正方形が,$C_k$内に存在するための$k$の条件を,$n$であらわせ.
(3)$C_k$内にある$1$辺が$k$の格子点の正方形の総数を$a_k$とするとき,$a_k$を$n$と$k$の式であらわせ.
(4)$a_1+a_2+\cdots +a_n$をもとめよ.
立教大学 私立 立教大学 2011年 第3問
座標平面上の放物線$\displaystyle y=\frac{1}{4}x^2$について,その頂点を$\mathrm{O}$とし,この放物線上に異なる$2$点$\mathrm{A}$,$\mathrm{B}$をとる.また$\mathrm{A}$,$\mathrm{B}$は頂点$\mathrm{O}$と異なる点で,$\angle \mathrm{AOB}$が直角になるものとする.点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$a,\ b$とし,$a+b=t$として,次の問に答えよ.

(1)$\angle \mathrm{AOB}$が直角となる条件を$a,\ b$を用いて表せ.
(2)$t$を用いて直線$\mathrm{AB}$の方程式を求めよ.
(3)頂点$\mathrm{O}$から直線$\mathrm{AB}$におろした垂線が,直線$\mathrm{AB}$と交わる点を$\mathrm{H}$とするとき,$t$を用いて直線$\mathrm{OH}$の方程式を求めよ.
(4)$\mathrm{A}$,$\mathrm{B}$が放物線上を動くとき,$t$を用いて点$\mathrm{H}$の座標を求めよ.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \alpha=\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}+6 \right\}^{\frac{1}{3}}-\left\{ \left( \frac{413}{8} \right)^{\frac{1}{2}}-6 \right\}^{\frac{1}{3}}$は整数を係数とする$3$次方程式
\[ 2x^3+[ア]x^2+[イ]x+[ウ]=0 \]
の解である.
(2)$f(x)=x^3-4x$とする.曲線$y=f(x)$上に$2$点$\mathrm{P}(t-1,\ f(t-1))$,$\mathrm{Q}(t+1,\ f(t+1))$をとる.線分$\mathrm{PQ}$が曲線$y=f(x)$と$\mathrm{P}$,$\mathrm{Q}$以外の点で交わるための$t$の条件は
\[ \frac{[エ]}{[オ]}<t<\frac{[カ]}{[キ]} \]
である.
立教大学 私立 立教大学 2011年 第3問
関数$y=-x^2+2x+2$のグラフに点$\mathrm{A}(0,\ a)$から$2$本の異なる接線が引けるとき,次の問に答えよ.

(1)点$\mathrm{A}$の$y$座標$a$が満たす条件を求めよ.
(2)点$\mathrm{A}$を通る$2$本の接線の式と接点の座標を$a$を用いて表せ.
(3)$2$本の接線が直交するときの$a$の値を求めよ.
(4)点$\mathrm{A}$を通る$2$本の接線と放物線で囲まれる図形を$y$軸で$2$つに分割したとき,右側の図形の面積を$S$とする.$(3)$で求めた$a$の値に対して$S$の面積を求めよ.
学習院大学 私立 学習院大学 2011年 第1問
次の$3$つの条件をすべて満たす$3$角形の$3$辺の長さを求めよ.

$(ⅰ)$ 最大角と最小角の差は$90^\circ$である.
$(ⅱ)$ $3$辺の長さを大きさの順に並べたものは等差数列である.
$(ⅲ)$ $3$辺の長さの和は$3$である.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。