タグ「条件」の検索結果

44ページ目:全636問中431問~440問を表示)
山梨大学 国立 山梨大学 2012年 第1問
次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$について,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=3$である.このとき,$\overrightarrow{p}=3 \overrightarrow{a}-\overrightarrow{b}$の大きさ$|\overrightarrow{p}|$を求めよ.
(2)条件$\left\{ \begin{array}{l}
1 \leqq x-2y \leqq 3 \\
0 \leqq x+y \leqq 1
\end{array} \right.$の表す領域$D$を図示せよ.
(3)$0 \leqq \theta<2\pi$のとき,不等式$3 \sin \theta-1<\cos 2\theta$を満たす$\theta$の値の範囲を求めよ.
(4)平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-1,\ -1)$がある.点$\mathrm{P}$が曲線$y=x^3$の$0<x<1$の部分を動くとき,$\triangle \mathrm{ABP}$の面積の最大値を求めよ.
山梨大学 国立 山梨大学 2012年 第3問
次の条件で定められる数列$\{a_n\}$がある.
\[ a_1=3,\quad na_{n+1}=3(n+1)a_n+2n(n+1) \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$a_2,\ a_3$を求めよ.
(2)$\displaystyle b_n=\frac{a_n}{n}$と定めるとき,$b_{n+1}$と$b_n$の関係式を求めよ.
(3)一般項$a_n$を求めよ.
(4)$\displaystyle \sum_{k=1}^n a_k$を求めよ.
愛媛大学 国立 愛媛大学 2012年 第2問
数列$\{a_n\}$の初項から第$n$項までの和$S_n$が条件
\[ S_n=4n-3a_n \]
を満たすとする.このとき,次の問いに答えよ.

(1)初項$a_1$を求めよ.
(2)一般項$a_n$を求めよ.
(3)$\displaystyle a_n>\frac{35}{9}$となる最小の自然数$n$を求めよ.ただし,必要ならば$\log_{10}2=0.301$,$\log_{10}3=0.477$として計算してよい.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
東京海洋大学 国立 東京海洋大学 2012年 第1問
$3$次関数$f(x)=-x^3+3ax^2+b$($a,\ b$は実数の定数)について,次の問に答えよ.

(1)$a=1,\ b=3$のとき,$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)$0 \leqq x \leqq 2$のとき$f(x) \leqq 4$となるための$a,\ b$の条件を求めよ.
茨城大学 国立 茨城大学 2012年 第1問
$k$を実数とする.$x$についての方程式$2^{x+k}-4^x-2^3=0$の実数解について,次の各問に答えよ.

(1)解が存在するときの$k$の条件を求めよ.
(2)正の解と負の解それぞれの個数を求めよ.
茨城大学 国立 茨城大学 2012年 第4問
点$\mathrm{O}$を座標平面の原点とする.$a,\ b$を正の実数とする.放物線$C_1:y=ax^2$と放物線$\displaystyle C_2:y=-(x-b)^2+\frac{5}{16}$は,共に,点$\mathrm{P}(x_0,\ y_0)$において直線$\ell$に接しているとする.直線$\ell$と$x$軸との交点を$\mathrm{Q}$とし,$\mathrm{R}(x_0,\ 0)$とする.次の各問に答えよ.

(1)$a,\ b$の条件を求めよ.
(2)線分の長さの比$\mathrm{OQ}:\mathrm{QR}$を求めよ.
(3)$\displaystyle a=\frac{1}{4}$とする.$x$軸と$C_1$と$x \leqq x_0$の部分の$C_2$とで囲まれる図形の面積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
平面上に点$\mathrm{O},\ \mathrm{A}_1,\ \mathrm{A}_2,\ \mathrm{A}_3,\ \cdots,\ \mathrm{A}_{100}$がある.ただし,同じ点があってもよい.また,平面上の点$\mathrm{P}$に対して,
\[ f(P) = \sum_{i=1}^{100} |\overrightarrow{\mathrm{PA}}_i|^2 \]
とする.また,$f(\mathrm{P})$の最小値を$m$とし,平面上の点$\mathrm{C}$は$f(\mathrm{C})=m$を満たすとする.
このとき,次の設問に答えよ.

(1)$\overrightarrow{a_i}=\overrightarrow{\mathrm{OA}}_i (i=1,\ 2,\ 3,\ \cdots,\ 100)$とするとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a_i}$を用いて表せ.
(2)次の条件
\[ (*) \qquad \sum_{i=1}^{100} \left( \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_i \mathrm{A}_j}|^2 \right) = \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_1 \mathrm{A}_j}|^2 + \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_2 \mathrm{A}_j}|^2 + \cdots+ \sum_{j=1}^{100} |\overrightarrow{\mathrm{A}_{100} \mathrm{A}_j}|^2=4000 \]
が成立しているときの$m$の値を求めよ.
(3)(2)における条件$(*)$が成立しているとき,集合
\[ \left\{A_i \ \; \bigg| \ \; |\overrightarrow{\mathrm{CA}_i}| \geqq 2,\ 1 \leqq i \leqq 100,\ i \text{は整数} \right\} \]
の要素の個数の最大値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
曲線上の点$\mathrm{P}$を通り,$\mathrm{P}$におけるこの曲線の接線$\ell$と直交する直線$m$をこの曲線の法線とよぶ.$a,\ b>0$とし,$2$次曲線$x^2 = 4a(y+b)$の法線が$(0,\ 2a)$を通るとき,接点$\mathrm{P}(p,\ q)$は
\[ p^2 = [(41)]ab, \quad q= [(42)] \]
をみたす.したがって条件をみたす接線と法線の組$(\ell,\ m)$は$2$組ある.この$4$本の直線で囲まれる$4$角形$S$の面積は$[(43)][(44)](a+b)\sqrt{ab}$である.また$2$本の法線と$2$次曲線で囲まれる部分で$S$に含まれる部分の面積は
\[ \left( \frac{[(45)][(46)]a+[(47)][(48)]b}{[49]} \right) \sqrt{ab} \]
である.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
数列$\{a_n\}$は次の$3$つの条件
\[ \begin{array}{ll}
(\mathrm{A}) & a_1=1 \\
(\mathrm{B}) & a_{n+1}^2 - 6a_{n+1}a_n + 8a_n^2 = 0 \quad (n=1,\ 2,\ 3,\cdots) \\
(\mathrm{C}) & a_{n+1} > 3 a_n \quad (n=1,\ 2.\ 3,\cdots)
\end{array} \]
を満たしている.以下の文は$\{a_n\}$の一般項を推測する記述である. \\
条件$(\mathrm{A})$と,条件$(\mathrm{B})$において$n=[(31)]$とおいた式から,$a_2$は$2$次方程式
\[ x^2 - [(32)]x + [(33)] = 0 \]
の解の$1$つである.この方程式の解のうち小さいほうは[(34)],大きいほうは[(35)]である.これらの候補のうち条件$(\mathrm{C})$において$n=1$とした式を満たすものを選ぶと,$a_2=[(36)]$である.同様に,$a_3=[(37)][(38)],\ a_4=[(39)][(40)]$となるので,一般項は$a_n=[(41)]^{n-1}$と推測される.
スポンサーリンク

「条件」とは・・・

 まだこのタグの説明は執筆されていません。